Phytochemical Screening And Antidiabetic Test Of Ethanol Extract Of Sapodilla Kecik Leaves (Manilkara kauki (L) Dubard) On Decreasing Blood Glucose Of Diabetic Rats

  • Novandi Purba Universitas Sumatera Utara
  • Urip Harahap Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, North Sumatra 20155, Indonesia
  • Poppy Anjelisa Z. Hasibuan Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, North Sumatra 20155, Indonesia
Keywords: Sapodilla kecik, (Manilkara kauki (L.) Dubard), antidiabetic

Abstract

The development of traditional medicine needs to be carried out so that Indonesia's natural wealth can be utilized as effectively as possible to improve people's welfare. As with diabetes, some reputable traditional herbal medicines contain antidiabetic properties. Natural antidiabetic drugs derived from compounds isolated from plants can be used as an alternative to traditional medicine for diabetes because they have potential side effects. Diabetes can be treated alternatively by using various substances, especially those containing polyphenols, such as flavonoids. Sapodilla kecik (Manilkara kauki (L.) Dubard) from the Sapotaceae family is a type of plant used in traditional medicine; leaves, roots and bark can be used to treat diarrhoea in children, seeds can be used as a febrifuge, anthelmintic, and as an antileprotic. Secondary metabolites in sapodilla kecik leaves are flavonoids, alkaloids, tannins, triterpenoids and glycosides. This research was carried out by characterizing and screening phytochemicals to determine the content of compounds in Sapodilla kecik (Manilkara kauki (L.) Dubard) and carrying out antidiabetic tests on streptozotocin-nicotinamide-induced diabetic rats. The results showed that sapodilla kecik leaves fulfilled the simplicia characterization requirements. Sapodilla leaves contain secondary metabolites such as alkaloids, flavonoids, tannins, glycosides, saponins and steroids. The ethanol extract of sapodilla kecik leaves at a dose of 500 mg/Kg BW starting from the 4th day of treatment, a dose of 250 mg/Kg BW starting on the 8th day of treatment, and a dose of 125 mg/Kg BW starting on the 12th day was able to reduce the KGD of induced diabetic rats with nicotinamide and streptozotocin.

Downloads

Download data is not yet available.

References

[1] Rajagopal, D., & Zilberman, D. (2008). Environmental, economic and policy aspects of biofuels. Foundations and Trends® in Microeconomics, 4(5), 353-468.
[2] American Diabetes Association, 2018. Standards of Medical Care in Diabetes- 2018 M. Matthew C. Riddle, ed., Available at: https://diabetesed.net/wp-content/uploads/2017/12/2018-ADA-Standards-of-Care.pdf.
[3] Patel, R., Patel, A., Desai, S., & Nagee, A. (2012). Study of secondary metabolites and antioxidant properties of leaves, stem and root among Hibiscus rosa-sinensis cultivars. Asian J Exp Biol Sci, 3(4), 719-25.
[4] Hajiaghaalipour, F., Khalilpourfarshbafi, M., & Arya, A. (2015). Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. International journal of biological sciences, 11(5), 508-524.
[5] Shao, H. B., Chu, L. Y., Shao, M. A., Jaleel, C. A., & Hong-mei, M. (2008). Higher plant antioxidants and redox signaling under environmental stresses. Comptes rendus biologies, 331(6), 433-441.
[6] Yang, W., Fortunati, E., Bertoglio, F., Owczarek, J. S., Bruni, G., Kozanecki, M., ... & Puglia, D. (2018). Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydrate polymers, 181, 275-284.
[7] Khare, C P. 2007. Indian Medicinal Plants. Springer Science & Bussiness Media LCC. New Delhi.
[8] Arsyad, M., & Annisa, A. R. (2016). Konsentrasi hambat minimum (KHM) ekstrak etanol buah sawo (Achras zapota L.) terhadap pertumbuhan bakteri Escherichia coli. Jurnal Ilmiah Ibnu Sina, 1(2), 211-218.
[9] Afifah E, 2016. Pemberian ekstrak air buah sawo (Manilkara zapota L.) menurunkan kadar glukosa darah tikus (Rattus norvegicus) diabetes mellitus. Jurnal Gizi Dan Dietetik Indonesia. Vol. 3 (3): 180-186
[10] Milind P dan Preeti, 2015. Chickoo: a wonderfull gift from nature. Jurnal Ayuverda Pharm Vol. 6 (4): 544-550.
[11] Fajeriyati N dan Andika, 2017. Uji Aktivitas Antibakteri Ekstrak Etanol Rimpang Kencur (Kaempferia galanga L.) pada Bakteri Subtilis dan Escherichia coli. JCPS. Vol. 1 (1): 36-41.
[12] Krishnasamy, G., Muthusamy, K., Chellappan, D. R., & Subbiah, N. (2016). Antidiabetic, antihyperlipidaemic, and antioxidant activity of Syzygium densiflorum fruits in streptozotocin and nicotinamide-induced diabetic rats. Pharmaceutical biology, 54(9), 1716-1726.
[13] Depkes RI. (2000). Parameter Standar Umum Ekstrak Tumbuhan Obat. Jakarta: Departemen Kesehatan RI. Halaman 3, 7-8, 10, 11.
[14] Rori, W. M. (2016). Formulasi dan evaluasi sediaan tablet ekstrak daun gedi hijau (Abelmoschus manihot) dengan metode granulasi basah. PHARMACON, 5(2).
[15] Salim, M., Sulistyaningrum, N., Isnawati, A., Sitorus, H., Yahya, Y., & Ni'mah, T. (2016). Karakterisasi simplisia dan ekstrak kulit buah duku (Lansium domesticum Corr) dari Provinsi Sumatera Selatan Dan Jambi. Jurnal Kefarmasian Indonesia, 117-128.
[16] RI, D. P. D. (1995). Farmakope Indonesia. Edisi IV. Depkes RI. Jakarta. hlm, 7.
[17] Depkes RI. 1989. Materia Medika Indonesia. Jilid V. Jakarta: Departemen Kesehatan Republik Indonesia. Hal. 549-553
[18] Harborne, J.B. (1987). Metode Fitokimia. Pennerjemah: Kosasih Padmawinata dan Iwang Soediro. Bandung: Penerbit ITB. Halaman 10-11, 49, 70-72, 76, 84-85, 94, 99.
[19] Assagaf, A. S. H., Nursamsiar, N., & Gani, S. A. (2020). Total Flavonoids Contain of Leaves of Sapodilla (Manilkara zapota L.). Journal of Pharmaceutical and Medicinal Sciences, 4(2).
[20] Hermawati, C. M., Sitasiwi, A. J., & Jannah, S. N. (2020). Studi Histologi Pankreas Tikus Putih (Rattus norvegicus L.) Setelah Pemberian Cuka Dari Kulit Nanas (Ananas comosus L. Merr). Jurnal Pro-Life, 7(1), 61-70.
[21] Semwal, P., & Painuli, S. (2019). Antioxidant, antimicrobial, and GC-MS profiling of Saussurea obvallata (Brahma Kamal) from Uttarakhand Himalaya. Clinical Phytoscience, 5, 1-11.
[22] Mykhailenko, O., Korinek, M., Ivanauskas, L., Bezruk, I., Myhal, A., Petrikaitė, V., ... & Hwang, T. L. (2020). Qualitative and quantitative analysis of Ukrainian Iris species: A fresh look on their antioxidant content and biological activities. Molecules, 25(19), 4588.
[23] Vinayagam, R., & Xu, B. (2015). Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutrition & metabolism, 12, 1-20.
[24] Brahmachari, G. (2011). Bio-flavonoids with promising antidiabetic potentials: A critical survey. Research signpost, 661(2), 187-212.
[25] Kumari, M. and Jain S. (2012). Tannins: An Antinutrient with Positive Effect to Manage Diabetes. Research Journal of Recent Sciences. 1(12): 1-8
[26] Peniati, E., Setiadi, E., Susanti, R., Iswari, R. (2017). Anti-hyperglycemic effect of Aloe vera peel extract on blood sugar level of alloxan-induced Wistar rats. IOP Publishing. 1-5.
[27] Elekofehinti, O. (2015). Saponins: Anti-diabetic principles from medicinal plants – A review. Pathophysiology. 22:95-103.
Published
2023-07-23
How to Cite
Purba, N., Harahap, U., & Hasibuan, P. A. Z. (2023). Phytochemical Screening And Antidiabetic Test Of Ethanol Extract Of Sapodilla Kecik Leaves (Manilkara kauki (L) Dubard) On Decreasing Blood Glucose Of Diabetic Rats. International Journal of Science, Technology & Management, 4(4), 902-908. https://doi.org/10.46729/ijstm.v4i4.869
Section
Articles