Comparative Analysis of Reverse Martingale And Cumulative Win Strategies Using Ichimoku Kinko Hyo Indicator
Abstract
Given the dearth of prior research on the practical implementation of money
management strategies in the foreign exchange market, making it arduous to
ascertain profitable money management comparisons, this study places its focus on
the amalgamation of money management strategies and technical indicators. The
research specifically explores the utilization of two money management strategies,
namely reverse martingale, and cumulative win strategy, in conjunction with
Ichimoku Kinko Hyo serving as the chosen technical indicator. The primary aim of
this research endeavor is to identify the most lucrative money management
combination within a three-year timeframe. The study centers on the EURUSD
currency pair, employing the H1 timeframe for analysis. The research methodology
encompasses four essential stages: data collection, data processing, strategy testing,
and result analysis. Subsequently, the acquired EURUSD data will undergo
amalgamation utilizing the One-Way ANOVA method to determine the presence of
statistically significant disparities between the two combinations. The outcomes of this
investigation underscore the supremacy of the cumulative win strategy and Ichimoku
Kinko Hyo combination, exhibiting a remarkable Return on Investment (ROI)
surpassing alternative combinations, soaring to an impressive figure exceeding
2860%.
Downloads
References
J. Koosakul and I. Shim, The effects of asset price volatility on market participation: Evidence from the Thai
foreign exchange market, J. Bank. Financ., vol. 124, 2021, doi:
1016/j.jbankfin.2020.106036.10.1016/j.jbankfin.2020.106036
E. Duncan et al., COVID-19 as a stress test: Assessing the bank regulatory framework, J. Financ. Stab., vol. 61,
p. 101016, 2022, doi: 10.1016/j.jfs.2022.101016.10.1016/j.jfs.2022.101016
Y. Li, T. Liu, Y. Song, Z. Li, and X. Guo, Could carbon emission control firms achieve effective financing in the
carbon market? A case study of China’s emission trading scheme, J. Clean. Prod., vol. 314, p. 128004, 2021,
doi: 10.1016/j.jclepro.2021.128004.10.1016/j.jclepro.2021.128004
N. J. Marín-Rodríguez, J. D. González-Ruiz, and S. Botero Botero, Dynamic Co-Movements among Oil Prices
and Financial Assets: A Scientometric Analysis, Sustain., vol. 14, no. 19, p. 12796, 2022, doi:
3390/su141912796.10.3390/su141912796
S. Deng, C. Xiao, Y. Zhu, J. Peng, J. Li, and Z. Liu, High-frequency direction forecasting and simulation trading
of the crude oil futures using Ichimoku KinkoHyo and Fuzzy Rough Set, Expert Syst. Appl., vol. 215, p. 119326,
, doi: 10.1016/j.eswa.2022.119326.10.1016/j.eswa.2022.119326
F. Fang et al., Cryptocurrency trading: a comprehensive survey, Financial Innovation, vol. 8, no. 1. jfinswufe.springeropen.com, 2022. doi: 10.1186/s40854-021-00321-6.10.1186/s40854-021-00321-6
International Journal Of Science, Technology & Management ISSN: 2722 - 4015
G. Shafer, Martingales at the Casino, in Trends in the History of Science, Springer, 2022, pp. 15–50. doi:
1007/978-3-031-05988-9_2.10.1007/978-3-031-05988-9_2
M. Denuit and C. Y. Robert, Risk sharing under the dominant peer-to-peer property and casualty insurance
business models, Risk Manag. Insur. Rev., vol. 24, no. 2, pp. 181–205, 2021, doi:
1111/rmir.12180.10.1111/rmir.12180
F. Salaghe, J. Sundali, M. W. Nichols, and F. Guerrero, An empirical investigation of wagering behavior in a
large sample of slot machine gamblers, J. Econ. Behav. Organ., vol. 169, pp. 369–388, 2020, doi:
1016/j.jebo.2019.11.024.10.1016/j.jebo.2019.11.024
H. Jamali, Y. Chihab, I. García-Magariño, and O. Bencharef, Hybrid Forex prediction model using multiple
regression, simulated annealing, reinforcement learning, and technical analysis, IAES International Journal of
Artificial Intelligence, vol. 12, no. 2. researchgate.net, pp. 892–911, 2023. doi: 10.11591/ijai.v12.i2.pp892-
10.11591/ijai.v12.i2.pp892-911
Y. Chihab, Z. Bousbaa, M. Chihab, O. Bencharef, and S. Ziti, Algo-Trading Strategy for Intraweek Foreign
Exchange Speculation Based on Random Forest and Probit Regression, Applied Computational Intelligence
and Soft Computing, vol. 2019. academia.edu, 2019. doi: 10.1155/2019/8342461.10.1155/2019/8342461
D. Welle, 2018: The worst year for stocks since the financial crisis, 2019. https://www.dw.com/en/2018-theworst-year-for-stocks-since-financial-crisis/a-46915652
The Lancet Regional Health – Europe, The regional and global impact of the Russian invasion of Ukraine,
Lancet Reg. Heal. - Eur., vol. 15, 2022, doi: 10.1016/j.lanepe.2022.100379.10.1016/j.lanepe.2022.100379
R. S. Oetama, F. L. Gaol, B. Soewito, and H. L. H. S. Warnars, Finding Features of Multiple Linear Regression
On Currency Exchange Pairs, Ultim. InfoSys J. Ilmu Sist. Inf., pp. 46–53, 2022, doi:
31937/si.v13i1.2683.10.31937/si.v13i1.2683
R. S. Oetama, F. L. Gaol, B. Soewito, and H. L. H. S. Warnars, When Candlesticks are Different Among Forex
Brokers, Can Traders Still Win?, in 2022 5th International Conference on Vocational Education and
Electrical Engineering: The Future of Electrical Engineering, Informatics, and Educational Technology
Through the Freedom of Study in the Post-Pandemic Era, ICVEE 2022 - Proceeding, IEEE, 2022, pp. 13–18.
doi: 10.1109/ICVEE57061.2022.9930395.10.1109/ICVEE57061.2022.9930395
F. Rundo, F. Trenta, A. L. di Stallo, and S. Battiato, Grid trading system robot (GTSbot): A novel mathematical
algorithm for trading FX market, Appl. Sci., vol. 9, no. 9, 2019, doi: 10.3390/app9091796.10.3390/app9091796