Comparative Analysis of Reverse Martingale And Cumulative Win Strategies Using Ichimoku Kinko Hyo Indicator

  • Vincent Wendy Department of Information Systems, Faculty of Engineering & Informatics, Universitas Multimedia Nusantara, Tangerang, Banten 18511, Indonesia
  • Raymond Sunardi Oetama Department of Information Systems, Faculty of Engineering & Informatics, Universitas Multimedia Nusantara, Tangerang, Banten 18511, Indonesia
Keywords: Cumulative win strategy, foreign exchange market, Ichimoku Kinko Hyo, money management strategy,and reverse martingale

Abstract

Given the dearth of prior research on the practical implementation of money
management strategies in the foreign exchange market, making it arduous to
ascertain profitable money management comparisons, this study places its focus on
the amalgamation of money management strategies and technical indicators. The
research specifically explores the utilization of two money management strategies,
namely reverse martingale, and cumulative win strategy, in conjunction with
Ichimoku Kinko Hyo serving as the chosen technical indicator. The primary aim of
this research endeavor is to identify the most lucrative money management
combination within a three-year timeframe. The study centers on the EURUSD
currency pair, employing the H1 timeframe for analysis. The research methodology
encompasses four essential stages: data collection, data processing, strategy testing,
and result analysis. Subsequently, the acquired EURUSD data will undergo
amalgamation utilizing the One-Way ANOVA method to determine the presence of
statistically significant disparities between the two combinations. The outcomes of this
investigation underscore the supremacy of the cumulative win strategy and Ichimoku
Kinko Hyo combination, exhibiting a remarkable Return on Investment (ROI)
surpassing alternative combinations, soaring to an impressive figure exceeding
2860%.

 

Downloads

Download data is not yet available.

References

J. Koosakul and I. Shim, The effects of asset price volatility on market participation: Evidence from the Thai

foreign exchange market, J. Bank. Financ., vol. 124, 2021, doi:

1016/j.jbankfin.2020.106036.10.1016/j.jbankfin.2020.106036

E. Duncan et al., COVID-19 as a stress test: Assessing the bank regulatory framework, J. Financ. Stab., vol. 61,

p. 101016, 2022, doi: 10.1016/j.jfs.2022.101016.10.1016/j.jfs.2022.101016

Y. Li, T. Liu, Y. Song, Z. Li, and X. Guo, Could carbon emission control firms achieve effective financing in the

carbon market? A case study of China’s emission trading scheme, J. Clean. Prod., vol. 314, p. 128004, 2021,

doi: 10.1016/j.jclepro.2021.128004.10.1016/j.jclepro.2021.128004

N. J. Marín-Rodríguez, J. D. González-Ruiz, and S. Botero Botero, Dynamic Co-Movements among Oil Prices

and Financial Assets: A Scientometric Analysis, Sustain., vol. 14, no. 19, p. 12796, 2022, doi:

3390/su141912796.10.3390/su141912796

S. Deng, C. Xiao, Y. Zhu, J. Peng, J. Li, and Z. Liu, High-frequency direction forecasting and simulation trading

of the crude oil futures using Ichimoku KinkoHyo and Fuzzy Rough Set, Expert Syst. Appl., vol. 215, p. 119326,

, doi: 10.1016/j.eswa.2022.119326.10.1016/j.eswa.2022.119326

F. Fang et al., Cryptocurrency trading: a comprehensive survey, Financial Innovation, vol. 8, no. 1. jfinswufe.springeropen.com, 2022. doi: 10.1186/s40854-021-00321-6.10.1186/s40854-021-00321-6

International Journal Of Science, Technology & Management ISSN: 2722 - 4015

http://ijstm.inarah.co.id

G. Shafer, Martingales at the Casino, in Trends in the History of Science, Springer, 2022, pp. 15–50. doi:

1007/978-3-031-05988-9_2.10.1007/978-3-031-05988-9_2

M. Denuit and C. Y. Robert, Risk sharing under the dominant peer-to-peer property and casualty insurance

business models, Risk Manag. Insur. Rev., vol. 24, no. 2, pp. 181–205, 2021, doi:

1111/rmir.12180.10.1111/rmir.12180

F. Salaghe, J. Sundali, M. W. Nichols, and F. Guerrero, An empirical investigation of wagering behavior in a

large sample of slot machine gamblers, J. Econ. Behav. Organ., vol. 169, pp. 369–388, 2020, doi:

1016/j.jebo.2019.11.024.10.1016/j.jebo.2019.11.024

H. Jamali, Y. Chihab, I. García-Magariño, and O. Bencharef, Hybrid Forex prediction model using multiple

regression, simulated annealing, reinforcement learning, and technical analysis, IAES International Journal of

Artificial Intelligence, vol. 12, no. 2. researchgate.net, pp. 892–911, 2023. doi: 10.11591/ijai.v12.i2.pp892-

10.11591/ijai.v12.i2.pp892-911

Y. Chihab, Z. Bousbaa, M. Chihab, O. Bencharef, and S. Ziti, Algo-Trading Strategy for Intraweek Foreign

Exchange Speculation Based on Random Forest and Probit Regression, Applied Computational Intelligence

and Soft Computing, vol. 2019. academia.edu, 2019. doi: 10.1155/2019/8342461.10.1155/2019/8342461

D. Welle, 2018: The worst year for stocks since the financial crisis, 2019. https://www.dw.com/en/2018-theworst-year-for-stocks-since-financial-crisis/a-46915652

The Lancet Regional Health – Europe, The regional and global impact of the Russian invasion of Ukraine,

Lancet Reg. Heal. - Eur., vol. 15, 2022, doi: 10.1016/j.lanepe.2022.100379.10.1016/j.lanepe.2022.100379

R. S. Oetama, F. L. Gaol, B. Soewito, and H. L. H. S. Warnars, Finding Features of Multiple Linear Regression

On Currency Exchange Pairs, Ultim. InfoSys J. Ilmu Sist. Inf., pp. 46–53, 2022, doi:

31937/si.v13i1.2683.10.31937/si.v13i1.2683

R. S. Oetama, F. L. Gaol, B. Soewito, and H. L. H. S. Warnars, When Candlesticks are Different Among Forex

Brokers, Can Traders Still Win?, in 2022 5th International Conference on Vocational Education and

Electrical Engineering: The Future of Electrical Engineering, Informatics, and Educational Technology

Through the Freedom of Study in the Post-Pandemic Era, ICVEE 2022 - Proceeding, IEEE, 2022, pp. 13–18.

doi: 10.1109/ICVEE57061.2022.9930395.10.1109/ICVEE57061.2022.9930395

F. Rundo, F. Trenta, A. L. di Stallo, and S. Battiato, Grid trading system robot (GTSbot): A novel mathematical

algorithm for trading FX market, Appl. Sci., vol. 9, no. 9, 2019, doi: 10.3390/app9091796.10.3390/app9091796

Published
2023-07-24
How to Cite
Wendy, V., & Sunardi Oetama, R. (2023). Comparative Analysis of Reverse Martingale And Cumulative Win Strategies Using Ichimoku Kinko Hyo Indicator. International Journal of Science, Technology & Management, 4(4), 1000-1008. https://doi.org/10.46729/ijstm.v4i4.874
Section
Articles