Design And Build A Double Roll Type Pecan Breaking Machine With A Power Of 0.5 Hp
Abstract
Pecan is one of the spices that become an ingredient in the process of the food and cosmetic industry. The pecan separator machine is made to facilitate and speed up the process of breaking the pecan fruit in order to increase work efficiency in the hope that the machine can achieve high efficiency in the form of good fruit yields. The purpose of this pecan fruit separator machine is to help facilitate the community in processing pecan fruit to the maximum of its production, and the community can also increase the processing productivity of pecan fruit, which can improve the community's economy. The research method applied in this study is an experimental method, namely the initial stage of designing a double roll type pecan breaking machine using Auto CAD. Then build the machine in the workshop based on the design that has been done before. The stages passed are making design drawings in Auto CAD and analyzing the components used in the pecan breaking machine. Such components are the frame, inlet funnel, shaft, breaker roller, bearing and outlet funnel. From the results of the analysis, the motor power is 0.5 HP with a rotation of 1400 rpm. The belt length used from the calculation of the pulley size on the 3" machine and the pulley on the 10 breaking roll is 42". For breaking rollers the outer diameter of the roller = 120 mm, the inner diameter of the roller = 100 mm, and the length of the roller = 190 mm. The shaft on the drive motor is 24 mm in diameter. The shaft isestimated to be of S30C carbon steel with tensile strength = 48 kg/mm².
Downloads
References
R. Andriani, “DOUBLE ROLL PADA VARIASI PERLAKUAN LAMA THE PERFOMANCE TEST OF
DOUBLE ROLL TYPE CANDLENUT SHELLING MACHINES AT VARIOUS OF,” 2020.
F. Sutrisno and A. I. Sinaga, “Analisa uji produktivitas kerja mesin pemecah buah kemiri dengan tumbukan
tenaga pegas kapasitas 60 kg / jam,” J. Ilm. “MEKANIK” Tek. Mesin ITM, vol. 4, no. 2, pp. 70–76, 2018,
[Online]. Available: https://jurnal.mesin.itm.ac.id/index.php/jm/article/view/89
M. Sari, D. Ibrahim, E. Wardiana, B. Penelitian, T. Rempah, and T. Industri, “PENAMPILAN DAN
MANFAAT LIMA SPESIES KEMIRI,” pp. 67–72.
K. H., K. M.H., and K. M., “Aleurites moluccana (L.) Willd.: ekologi, silvikultur dan produktivitas,” Aleurites
moluccana Willd. Ekol. silvikultur dan Produkt., 2011, doi: 10.17528/cifor/003480.
K. Akhir and A. Laedan, “Mesin Pemecah Kemiri Dengan Kapasitas 20 Kg Per Jam Industri Program Diploma –
Iv Fakultas Teknik Universitas Sumatera Utara,” 2010.
P. Studi, T. Pertanian, and J. T. Pertanian, “Rancang Bangun Alat Pemecah Kulit Kemiri Dengan Modifikasi
Gigi Pada Posisi Horizontal Sistem Rotary 450 Rpm,” 2019.
R. Sinaga, “BIJI KEMIRI ( Aleurites moluccana Willd .) SISTEM RIPLE MILL,” 2017.
R. P. Adolf, “Analisis Alat Pemecah Kulit Kemiri Dengan Modifikasi Gigi Pada Posisihorizontalsistem
Rotary450 Rpm,” 2019, [Online]. Available: http://repository.ummat.ac.id/id/eprint/455
F. Abdarrasyid, “Mesin Pemecah Cangkang Kemiri Tipe Double Roll the Effects of Rotation Speed and Roll
Distance To the Seed Candlenut Crack Percentage on Candlenut Shell Cracker Machine Type Double,” 2019.
J. Jasman, F. Febriwanto, and Z. A. Putra, “Rancang bangun mesin pemecah buah kemiri dengan kapasitas 20 kg
/jam (perancangan),” J. Pendidik. Tek. Mesin, vol. 1, no. 1, pp. 1–13, 2018, [Online]. Available:
https://www.researchgate.net/publication/328475663_RANCANG_BANGUN_MESIN_PEMECAH_BUAH_K
EMIRI_DENGAN_KAPASITAS_20_KGJAM_PERANCANGAN_DESIGNING_UPPER_CRUSHER_FRUIT
_MACHINE_WITH_20_KG_HOUR_CAPACITY_DESIGNING
Sularso and K. Suga, Dasar Perencanaan Dan Pemilihan Elemen Mesin, Kesembilan. jakarta: PT Pradnya
Pramita, 2018.
J. T. Mesin, F. T. Industri, and U. Trisakti, “Kagoshimaken kōritsu shō chūgakkō kyōshokuin chōki jinji idō no
hyōjun.,” pp. 1–11, 1974.
H. Hadiyanto, M. M. Azimatun Nur, and G. D. Hartanto, “Cultivation of chlorella sp. As biofuel sources in palm
oil mill effluent (POME),” Int. J. Renew. Energy Dev., vol. 1, no. 2, pp. 45–49, 2012, doi:
14710/ijred.1.2.45-49.
Y. Li, Q. Zhang, Z. Wang, X. Wu, and W. Cong, “Evaluation of power consumption of paddle wheel in an open
raceway pond,” Bioprocess Biosyst. Eng., vol. 37, no. 7, pp. 1325–1336, 2014, doi: 10.1007/s00449-013-1103-3.
S. S. Sawant, S. N. Gosavi, H. P. Khadamkar, C. S. Mathpati, R. Pandit, and A. M. Lali, “Energy efficient design
of high depth raceway pond using computational fluid dynamics,” Renew. Energy, vol. 133, pp. 528–537, 2019,
doi: 10.1016/j.renene.2018.10.016.
R. Slade and A. Bauen, “Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and
future prospects,” Biomass and Bioenergy, vol. 53, no. 0, pp. 29–38, 2013, doi: 10.1016/j.biombioe.2012.12.019.
S. Sivakaminathan et al., “Light guide systems enhance microalgae production efficiency in outdoor high rate
ponds,” Algal Res., vol. 47, no. September 2019, p. 101846, 2020, doi: 10.1016/j.algal.2020.101846.
S. Bahri, R. Setiawan, W. Hermawan, and M. Yunior, “Perkembangan Desain dan Kinerja Aerator Tipe Kincir,”
J. Keteknikan Pertan., vol. 2, no. 1, p. 21685, 2014, doi: 10.19028/jtep.02.1.
Y. Chisti, “Biodiesel from microalgae,” Biotechnol. Adv., vol. 25, no. 3, pp. 294–306, 2007, doi:
1016/j.biotechadv.2007.02.001.
D. Kumar and S. Sarkar, “A review on the technology, performance, design optimization, reliability, technoeconomics and environmental impacts of hydrokinetic energy conversion systems,” Renew. Sustain. Energy
Rev., vol. 58, pp. 796–813, 2016, doi: 10.1016/j.rser.2015.12.247.