Power Business Intelligence in the Data Science Visualization Process to Forecast CPO Prices
Abstract
Forecasting is one of the techniques in data mining by utilizing the data available in the data warehouse. With the development of science, forecasting techniques have also entered the computational field where the forecasting technique uses the artificial neural network (ANN) method. Where is the method for simple forecasting using the Time Series method. However, the ability to create data visualizations certainly hinders researchers from maximizing research results. Of course, with the development of the Power BI software, the data science process is more neatly presented in the form of visualization, where the data science process involves various fields so that in this paper the results of forecasting the price of crude palm oil (CPO) are presented for the development of the CPO business with the hope of implementing the Business Process. intelligence (BI) by involving ANN, namely the time series for forecasting. From the final results, accuracy in forecasting with time series involves 2 accuracy techniques, the first using MAPE and getting a result of 0.03214% and the second using MSE to get 962.91 results.
Downloads
References
M. K. M. Nasution, O. Salim Sitompul, and E. Budhiarti Nababan, “Data Science,” J.
Phys. Conf. Ser., vol. 1566, no. 1, 2020, doi: 10.1088/1742-6596/1566/1/012034.
G. Vicario and S. Coleman, “A review of data science in business and industry and a
International Journal Of Science, Technology & Management ISSN: 2722 - 4015
future view,” Appl. Stoch. Model. Bus. Ind., vol. 36, no. 1, pp. 6–18, Jan. 2020, doi:
https://doi.org/10.1002/asmb.2488.
L. Cao, “Data science: A comprehensive overview,” ACM Comput. Surv., vol. 50, no.
, 2017, doi: 10.1145/3076253.
M. Molina-Solana, M. Ros, M. D. Ruiz, J. Gómez-Romero, and M. J. Martin-Bautista,
“Data science for building energy management: A review,” Renew. Sustain. Energy
Rev., vol. 70, pp. 598–609, 2017, doi: https://doi.org/10.1016/j.rser.2016.11.132.
B. V. Dhar, “P64-Dhar_Data_Science_Prediction,” 2013.
N. Tomasevic, N. Gvozdenovic, and S. Vranes, “An overview and comparison of
supervised data mining techniques for student exam performance prediction,” Comput.
Educ., vol. 143, p. 103676, 2020, doi: https://doi.org/10.1016/j.compedu.2019.103676.
A. R. Lubis, M. Lubis, Al-Khowarizmi, and D. Listriani, “Big Data Forecasting
Applied Nearest Neighbor Method,” 2019, doi: 10.1109/ICSECC.2019.8907010.
R. F. Rahmat, A. Rizki, A. F. Alharthi, and R. Budiarto, “Big data forecasting using
evolving multi-layer perceptron,” 2016 4th Saudi Int. Conf. Inf. Technol. (Big Data
Anal. KACSTIT 2016, 2016, doi: 10.1109/KACSTIT.2016.7756069.
N. Shabbir, R. AhmadiAhangar, L. Kütt, M. N. Iqbal, and A. Rosin, “Forecasting Short
Term Wind Energy Generation using Machine Learning,” in 2019 IEEE 60th
International Scientific Conference on Power and Electrical Engineering of Riga
Technical University (RTUCON), 2019,
pp. 1–4, doi: 10.1109/RTUCON48111.2019.8982365.
A. Boukerche and J. Wang, “Machine Learning-based traffic prediction models for
Intelligent Transportation Systems,” Comput. Networks, vol. 181, p. 107530, 2020, doi:
https://doi.org/10.1016/j.comnet.2020.107530.
A. Al-Khowarizmi, O. S. Sitompul, S. Suherman, and E. B. Nababan, “Measuring the
Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas,”
J. Phys. Conf. Ser., vol. 930, no. 1, 2017, doi: 10.1088/1742-6596/930/1/012004.
Y. Demchenko et al., “EDISON Data Science Framework: A Foundation for Building
Data Science Profession for Research and Industry,” in 2016 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), 2016, pp. 620–
, doi: 10.1109/CloudCom.2016.0107.
T. Radivilova, L. Kirichenko, and B. Vitalii, “Comparative analysis of machine
learning classification of time series with fractal properties,” in 2019 IEEE 8th
International Conference on Advanced Optoelectronics and Lasers (CAOL), 2019, pp.
–560, doi: 10.1109/CAOL46282.2019.9019416.
A. R. Lubis, S. Prayudani, and Al-Khowarizmi, “Optimization of MSE Accuracy Value
Measurement Applying False Alarm Rate in Forecasting on Fuzzy Time Series based
on Percentage Change,” in 2020 8th International Conference on Cyber and IT Service
Management (CITSM), 2020, pp. 1–5, doi: 10.1109/CITSM50537.2020.9268906.
R. Gao and O. Duru, “Parsimonious fuzzy time series modelling,” Expert Syst. Appl.,
vol. 156, p. 113447, 2020, doi: https://doi.org/10.1016/j.eswa.2020.113447.
A. L. Rucitra and M. A. Pradana, “Demand forecasting for crude palm oil (CPO) using
the time series method,” IOP Conf. Ser. Earth Environ. Sci., vol. 475, no. 1, 2020, doi:
1088/1755-1315/475/1/012059.
M. Handini, “The effect of sludge on oil palm mills with different doses on the growth
International Journal Of Science, Technology & Management ISSN: 2722 - 4015
and yield of two varieties of soybean plants (Glycine max (L.) Merrill),” in Bahasa
“Pengaruh pemberian sludge pabrik kelapa sawit dengan dosis yang berbeda terhadap
pertumbuhan dan,” Doctoral Dissertation, Universitas Islam Negeri Sultan Sarif Kasim
Riau, 2014.
Al-Khowarizmi, I. R. Nasution, M. Lubis, and A. R. Lubis, “The effect of a secos in
crude palm oil forecasting to improve business intelligence,” Bull. Electr. Eng.
Informatics, vol. 9, no. 4, pp. 1604–1611, 2020, doi: 10.11591/eei.v9i4.2388.
M. E. Al Khowarizmi, Rahmad Syah, Mahyuddin K. M. Nasution, “Sensitivity of
MAPE using detection rate for big data forecasting crude palm oil on k-nearest
neighbor,” Int. J. Electr. Comput. Eng., vol. 11, no. 3, 2021, doi:
http://doi.org/10.11591/ijece.v11i3.pp%25p.
L. M. D. Yiu, A. C. L. Yeung, and T. C. E. Cheng, “The impact of business intelligence
systems on profitability and risks of firms,” Int. J. Prod. Res., pp. 1–24, May 2020, doi:
1080/00207543.2020.1756506.
G. Andrienko et al., “Big data visualization and analytics: Future research challenges
and emerging applications,” CEUR Workshop Proc., vol. 2578, 2020.
M. Pearson, B. Knight, D. Knight, and M. Quintana, “Administering Power BI BT -
Pro Microsoft Power Platform: Solution Building for the Citizen Developer,” M.
Pearson, B. Knight, D. Knight, and M. Quintana, Eds. Berkeley, CA: Apress, 2020, pp.
–330.
E. Bas, U. Yolcu, and E. Egrioglu, “Intuitionistic fuzzy time series functions approach
for time series forecasting,” Granul. Comput., no. 2013, 2020, doi: 10.1007/s41066-
-00220-8.
A. Ramírez-Rojas, L. D. G. Sigalotti, E. L. Flores Márquez, and O. Rendón, “Chapter 2
- WITHDRAWN: Stochastic processes,” A. Ramírez-Rojas, L. D. G. Sigalotti, E. L.
Flores Márquez, and O. B. T.-T. S. A. in S. Rendón, Eds. Elsevier, 2019, pp. 21–86.
T. C. Mills, “Chapter 1 - Time Series and Their Features,” T. C. B. T.-A. T. S. A. Mills,
Ed. Academic Press, 2019, pp. 1–12.
D. S. G. Pollock, “Chapter 19 - Prediction and Signal Extraction,” in Signal Processing
and its Applications, D. S. G. B. T.-H. of T. S. A. Pollock Signal Processing, and
Dynamics, Ed. London: Academic Press, 1999, pp. 575–615.
S. Prayudani, A. Hizriadi, Y. Y. Lase, Y. Fatmi, and Al-Khowarizmi, “Analysis
Accuracy of Forecasting Measurement Technique on Random K-Nearest Neighbor
(RKNN) Using MAPE and MSE,” J. Phys. Conf. Ser., vol. 1361, no. 1, pp. 0–8, 2019,
doi: 10.1088/1742-6596/1361/1/012089.
A. R. Lubis, M. Lubis, and A.- Khowarizmi, “Optimization of distance formula in KNearest Neighbor method,” Bull. Electr. Eng. Informatics, vol. 9, no. 1, pp. 326–338,
, doi: 10.11591/eei.v9i1.1464