Reliability Analysis of Communication Network Service Quality For Internet of Vehicles (IoV)

  • Nizirwan Anwar Faculty of Computer Science, Esa Unggul University
  • Dewanto Rosian Adhy Informatics Engineering Study Program College of Technology YBS International
  • Budi Tjahjono Faculty of Computer Science, Esa Unggul University
  • Rudi Hermawan Informatics Engineering Study Program College of Technology YBS International
  • Nur Widiyasono Faculty of Engineering, University of Siliwangi
  • Muhammad Abdullah Hadi Faculty of Computer Science, EsaUnggul University
Keywords: Internet of Vehicle (IoV), Quality of Service (QoS), Network Infrastructure.

Abstract

The development of the Internet of Vehicle (IoV) is overgrowing toward driving comfort, safety, and efficiency. Autopilot or a car without a driver is one implementation of IoT. To run the full function of IoV, a reliable communication network is needed because the risk will be substantial due to the low quality of network infrastructure services. In this research, we will analyze the quality of network infrastructure services. The analysis can be done through two approaches: direct measurement in the field using a GPS Tracker-based system and modeling using the mathematical function of transmit power of mobile communication transmitting devices. The test is carried out in a specific area with a sample of high traffic and low-density areas. This method was chosen to find the right pattern in measuring the quality of communication network services. The tests carried out produce dynamic data on service quality in certain areas. For areas of low density, the service quality tends to be below as well, and many areas without signal are found, while for areas with high density, the quality of service is found to be good, but network overload conditions often occur.

Downloads

Download data is not yet available.

References

S. Khara, “Internet of Vehicles ( IOV ): Evolution , Architectures , Security Issues and Trust Aspects,” Int. J. Recent Technol. Eng., no. March 2019, 2019.

O. Kaiwartya et al., “Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects,” IEEE Access, vol. 4, pp. 5356–5373, 2016, doi: 10.1109/ACCESS.2016.2603219.

C. W. Axelrod, “Integrating in-vehicle, vehicle-To-vehicle, and intelligent roadway systems,” Int. J. Des. Nat. Ecodynamics, vol. 13, no. 1, pp. 23–38, 2018, doi: 10.2495/DNE-V13-N1-23-38.

L. Xu and G. McArdle, “Internet of Too Many Things in Smart Transport: The Problem, the Side Effects and the Solution,” IEEE Access, vol. 6, no. c, pp. 62840–62848, 2018, doi: 10.1109/ACCESS.2018.2877175.

T. A. Butt, R. Iqbal, S. C. Shah, and T. Umar, “Social Internet of Vehicles : Architecture and enabling,” Comput. Electr. Eng., vol. 69, no. December 2017, pp. 68–84, 2018, doi: 10.1016/j.compeleceng.2018.05.023.

L. A. Maglaras, A. H. Al-Bayatti, Y. He, I. Wagner, and H. Janicke, “Social Internet of Vehicles for smart cities,” J. Sens. Actuator Networks, vol. 5, no. 1, pp. 1–22, 2016, doi: 10.3390/jsan5010003.

A. A. Juan, C. A. Mendez, J. Faulin, J. De Armas, and S. E. Grasman, “Electric vehicles in logistics and transportation: A survey on emerging environmental, strategic, and operational challenges,” Energies, vol. 9, no. 2, pp. 1–21, 2016, doi: 10.3390/en9020086.

B. Di Martino, M. Rak, M. Ficco, A. Esposito, S. A. Maisto, and S. Nacchia, “Internet of things reference architectures, security and interoperability: A survey,” Internet of Things, vol. 1–2, pp. 99–112, 2018, doi: 10.1016/j.iot.2018.08.008.

X. Krasniqi and E. Hajrizi, “Use of IoT Technology to Drive the Automotive Industry from Connected to Full Autonomous Vehicles,” IFAC-PapersOnLine, vol. 49, no. 29, pp. 269–274, 2016, doi: 10.1016/j.ifacol.2016.11.078.

M. Abu Talib, S. Abbas, Q. Nasir, and M. F. Mowakeh, “Systematic literature review on Internet-of-Vehicles communication security,” Int. J. Distrib. Sens. Networks, vol. 14, no. 12, 2018, doi: 10.1177/1550147718815054.

B. Vaidya and H. T. Mouftah, “IoT Applications and Services for Connected and Autonomous Electric Vehicles,” Arab. J. Sci. Eng., vol. 45, no. 4, pp. 2559–2569, 2020, doi: 10.1007/s13369-019-04216-8.

Y. Zou and J. Lv, “Information security transmission technology in Internet of things control system,” Int. J. Online Eng., vol. 14, no. 6, pp. 177–190, 2018, doi: 10.3991/ijoe.v14i06.8707.

D. Hortelano, T. Olivares, M. C. Ruiz, C. Garrido-Hidalgo, and V. López, “From sensor networks to internet of things. Bluetooth low energy, a standard for this evolution,” Sensors (Switzerland), vol. 17, no. 2, pp. 1–31, 2017, doi: 10.3390/s17020372.

Y. Dongre and R. Ingle, “An Investigation of QoS Criteria for Optimal Services Selection in Composition,” in 2nd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2020 - Conference Proceedings, 2020, no. Icimia, pp. 705–710, doi: 10.1109/ICIMIA48430.2020.9074950.

F. Arena and G. Pau, “An overview of vehicular communications,” Futur. Internet, vol. 11, no. 2, 2019, doi: 10.3390/fi11020027.

E. Borcoci, S. G. Obreja, and M. C. Vochin, “Functional Layered Architectures and Control Solutions in Internet of Vehicles-Comparison,” Int. J. Adv. Internet Technol. 11(1&2), vol. 11, no. 1&2, pp. 31–43, 2018.

E. Borcoci, S. Obreja, and M. Vochin, “Internet of Vehicles Functional Architectures -Comparative Critical Study,” Ninth Int. Conf. Adv. Futur. Internet AFIN 2017, no. 7, pp. 12–19, 2017, [Online]. Available: https://www.thinkmind.org/download.php?articleid=afin_2017_1_30_40013%0Ahttp://www.iaria.org/conferences2017/AwardsAFIN17.html.

S. M. Chun and J. T. Park, “A mechanism for reliable mobility management for internet of things using CoAP,” Sensors (Switzerland), vol. 17, no. 1, 2017, doi: 10.3390/s17010136.

F. Aadil, W. Ahsan, Z. U. Rehman, P. A. Shah, S. Rho, and I. Mehmood, “Clustering algorithm for Internet of Vehicles (IoV) based on dragonfly optimizer (CAVDO),” J. Supercomput., vol. 74, no. 9, pp. 4542–4567, 2018, doi: 10.1007/s11227-018-2305-x.

S. Sharma and B. Kaushik, “A survey on Internet of Vehicles: Applications, security issues & solutions,” Veh. Commun., vol. 20, p. 100182, 2019, doi: 10.1016/j.vehcom.2019.100182.

J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni, “Improving MQTT Data Delivery in Mobile Scenarios: Results from a Realistic Testbed,” Mob. Inf. Syst., vol. 2016, 2016, doi: 10.1155/2016/4015625.

W. Zhang and X. Xi, “The innovation and development of Internet of Vehicles,” China Commun., vol. 13, no. 5, pp. 122–127, 2016, doi: 10.1109/CC.2016.7489980.

M. F. K. Sial, “Security Issues in Internet of Things: A Comprehensive Review,” Am. Sci. Res. J. Eng. Technol. Sci., vol. 53, no. 1, pp. 207–214, 2019.

S. Jaloudi, “Communication protocols of an industrial internet of things environment: A comparative study,” Futur. Internet, vol. 11, no. 3, 2019, doi: 10.3390/fi11030066.

H. Tahaei, F. Afifi, A. Asemi, F. Zaki, and N. B. Anuar, “The rise of traffic classification in IoT networks: A survey,” J. Netw. Comput. Appl., p. 102538, 2020, doi: 10.1016/j.jnca.2020.102538.

F. Arslan, B. Wajid, and H. Shafique, “Mobile GPS based Traffic Anomaly Detection System for Vehicular Network,” Int. J. Comput. Trends Technol., vol. 67, no. 6, pp. 31–36, 2019, doi: 10.14445/22312803/ijctt-v67i6p104.

Y. Perwej, F. Parwej, M. M. Mohamed Hassan, and N. Akhtar, “The Internet-of-Things (IoT) Security : A Technological Perspective and Review,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., no. February, pp. 462–482, 2019, doi: 10.32628/CSEIT195193.

N. Koteswara Rao and G. Swain, “A systematic study of security challenges and infrastructures for Internet of Things,” Int. J. Eng. Technol., vol. 7, no. 4.36 Special Issue 36, pp. 700–706, 2018, doi: 10.14419/ijet.v7i2.29.14001.

D. Arianto, N. Fauziah, and R. Randa, “PEMETAAN SEBARAN LOKASI DAN ANALISIS JANGKAUAN AREA PELAYANAN MENARA TELEKOMUNIKASI DI 4 KECAMATAN , KABUPATEN PASAMAN BARAT ( Studi Kasus di Kecamatan Pasaman , Sasak Ranak pasisie , Kinali dan Luhak Nan Duo ),” no. November 2018, p. 54581, 2019.

I. Santoso, U. Diponegoro, and I. Santoso, “Simulasi Prediksi Cakupan Antena pada BTS,” no. August, 2015.

A. Winaya, G. Sukadarmika, and L. Linawati, “Analisis Penataan Sel Untuk Layanan Sistem WCDMA Di Area Jalan Tengah I Kerobokan,” Maj. Ilm. Teknol. Elektro, vol. 16, no. 2, p. 95, 2017, doi: 10.24843/mite.2017.v16i02p17.

A. G. Palilu, “Studi Awal Perencanaan Jumlah Kebutuhan BTS dalam Penerapan Menara Bersama Telekomunikasi di Kota Palangka Raya,” Bul. Pos dan Telekomun., vol. 12, no. 4, p. 269, 2015, doi: 10.17933/bpostel.2014.120403.

Published
2021-09-26
How to Cite
Nizirwan Anwar, Dewanto Rosian Adhy, Budi Tjahjono, Rudi Hermawan, Nur Widiyasono, & Muhammad Abdullah Hadi. (2021). Reliability Analysis of Communication Network Service Quality For Internet of Vehicles (IoV). International Journal of Science, Technology & Management, 2(5), 1588-1599. https://doi.org/10.46729/ijstm.v2i5.310