Performance Analysis of Small Horizontal Axis Wind Turbine with Airfoil NACA 4412
Abstract
The horizontal axis wind turbine (HAWT) design with low wind speed requires blade geometry selection. The analysis uses the potential flow panel method and the integral boundary layer formulation to analyze wind flow around the airfoil. The blade design with the blade element momentum (BEM) theory has an aerodynamic coefficient value along the blade. Power wind calculates to model the wind shear pressure at each blade. This research aims to determine the wind turbine rotor based on the performance, including the power coefficient, tip speed ratio, power, and rpm. The simulation uses an airfoil NACA 4412 which has optimal coefficient lift (Cl) = 1.92 at 190 pitch of angle, coefficient drag (Cd) = 0.0635 at 130 pitch angle and Cl / Cd = 155 at tilt angle = 40. Five models of 2.5 m diameter blades with different angles for each chord. The test results show that the change in the speed ratio affects the power coefficient so that the optimal power coefficient on NACA 4412 in experiment 5 is 0.56, and change in rotation per minute affects the output power so that the rotation per minute and the optimal power in experiment 4 with a value of 374 rpm and 553 W.
Downloads
References
[2] X. Shen, H. Yang, J. Chen, X. Zhu, and Z. Du, “Aerodynamic shape optimization of non-straight small wind turbine blades,” Energy Convers. Manag., vol. 119, pp. 266–278, Jul. 2016, DOI: 10.1016/j.enconman.2016.04.008.
[3] S. Sudarsono, A. A. Susastriawan, and S. Sugianto, “Three-dimensional CFD Analysis of Performance of Small-scale Hawt based on Modified NACA-4415 Airfoil,” Int. J. Technol., vol. 10, no. 1, p. 212, Jan. 2019, DOI: 10.14716/ijtech.v10i1.2237.
[4] A. Sayogo and N. Caroko, “PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA,” p. 8, 2016.
[5] M. R. Birajdar and S. A. Kale, “PERFORMANCE ANALYSIS OF NEW AIRFOILS AND BLADE FOR A SMALL WIND TURBINE,” p. 12.
[6] S. McTavish, D. Feszty, and F. Nitzsche, “Evaluating Reynolds number effects in small-scale wind turbine experiments,” J. Wind Eng. Ind. Aerodyn., vol. 120, pp. 81–90, Sep. 2013, DOI: 10.1016/j.jweia.2013.07.006.
[7] J. Morgado, R. Vizinho, M. A. R. Silvestre, and J. C. Páscoa, “XFOIL vs. CFD performance predictions for high lift low Reynolds number airfoils,” Aerosp. Sci. Technol., vol. 52, pp. 207–214, May 2016, DOI: 10.1016/j.ast.2016.02.031.
[8] . R. K., “ANALYSIS AND OPTIMIZATION OF HORIZONTAL AXIS WIND TURBINE BLADE PROFILE,” Int. J. Res. Eng. Technol., vol. 05, no. 07, pp. 19–24, Jul. 2016, DOI: 10.15623/ijret.2016.0507004.
[9] B. Bavanish and K. Thyagarajan, “Optimization of power coefficient on a horizontal axis wind turbine using bem theory,” Renew. Sustain. Energy Rev., vol. 26, pp. 169–182, Oct. 2013, doi: 10.1016/j.rser.2013.05.009.
[10] S. Rajakumar and D. Ravindran, “Iterative approach for optimising coefficient of power, coefficient of lift and drag of wind turbine rotor,” Renew. Energy, vol. 38, no. 1, pp. 83–93, Feb. 2012, DOI: 10.1016/j.renene.2011.07.006.
[11] M. Bakırcı and S. Yılmaz, “Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines,” Eng. Sci. Technol. Int. J., vol. 21, no. 6, pp. 1128–1142, Dec. 2018, DOI: 10.1016/j.jestch.2018.05.006.
[12] T. D. Oliveira, L. A. Tofaneli, and A. Á. B. Santos, “Combined effects of pitch angle, rotational speed and site wind distribution in small HAWT performance,” J. Braz. Soc. Mech. Sci. Eng., vol. 42, no. 8, p. 425, Aug. 2020, DOI: 10.1007/s40430-020-02501-4.