Assessment Of Complex Ii Fuel Oil Heat Exchanger Utilizing Heat Transfer Methodology

  • Budi Sulistiyo Nugroho Oil and Gas Refinery Engineering Study Programme, Polytechnic Energy and Mineral Akamigas, Cepu, Blora, Indonesia.
  • Budi Sulistiyo Nugroho Oil and Gas Refinery Engineering Study Programme, Polytechnic Energy and Mineral Akamigas, Cepu, Blora, Indonesia.
  • Griselda Ivonne Aqilah Oil and Gas Refinery Engineering Study Programme, Polytechnic Energy and Mineral Akamigas, Cepu, Blora, Indonesia.
  • Nimrod Alvino Process Safety Engineering, Oil and Gas Company, Lomanis, Cilacap,53222.
Keywords: Fouling Factor, Heat Exchanger, Pressure Drop and Shell dan Tube.

Abstract

The heating stage of oil and gas refining commences with a heat exchanger. Using the pressure drop method and dirt factor in conjunction with the utmost standard permissible limit is one method of evaluating the thermal efficiency of a heat exchanger. This is performed to ascertain the value of the pressure drop, or pressure drop, which is directed at the fluid passage in the shell and pipeline. Moreover, a dust factor value is necessary to account for the potential accumulation of impurities and scale on the walls outside the heat exchanger conduit. The dust factor value is the maximum value that the parameter permits to ascertain the feasibility of the heat exchanger. Heat Exchanger 011-E-112 in the Fuel Oil Complex Unit The results indicate that heat exchanger 11E-112 can still be utilized despite the necessity for design enhancements. The design data for the shell is 1.7 psi, and the tube is approximately 18.92 psi. The Dirt Factor values for the shell and tube are 0.017 BTU/hour ft2°F and 0.034 BTU/hour ft2°F, respectively. The tube pressure drop value is 130.32 psi, while the shell pressure drop value is 2.53 psi.

Downloads

Download data is not yet available.

References

P. Nurhasanah and D. C. Pratiwi, “Evaluasi Kinerja Heat Exchanger 05 ( HE-05 ) Pusat Pengembangan Sumber Daya Manusia Minyak dan Gas Bumi Cepu (PPSDM Migas Cepu ),” vol. 12, no. 2, pp. 5–11, 2022.

P. Bichkar, O. Dandgaval, P. Dalvi, R. Godase, and T. Dey, “Study of Shell and Tube Heat Exchanger with the Effect of Types of Baffles,” Procedia Manuf., vol. 20, pp. 195–200, 2018, doi: 10.1016/j.promfg.2018.02.028.

A. Shahab and Anggi Wahyuningsi, “Evaluasi Kinerja Heat Exchanger - 003 Di Pusat Pengembangan Sumber Daya Manusia Minyak Dan Gas Bumi (PPSDM Migas Cepu),” J. Innov. Res. Knowl., vol. 2, no. 8, pp. 3229–3242, 2023, doi: 10.53625/jirk.v2i8.4742.

I. Bizzy et al., “Studi Perhitungan Alat Penukar Kalor Tipe Shell And Tube Dengan Program Heat Transfer,” vol. 13, no. 1, pp. 67–77, 2013.

Kern, Donald. Q.,1965, "Process Heat Transfer", New York: McGraw-Hi. Book Company, doi: 10.1615/ihtc9.2000.

A. A. Abd, M. Q. Kareem, and S. Z. Naji, “Performance analysis of shell and tube heat exchanger: Parametric study,” Case Stud. Therm. Eng., vol. 12, pp. 563–568, 2018, doi: 10.1016/j.csite.2018.07.009.

Kriswahyudi and Reza, “Perancangan Alat Penukar Kalor Dengan Standar Tema (Standar Of Tabular Exchanger Manufacture Assosiation) Satu Lintas Shell Dan Satu Lintas Tube (One Shell And One Tube) Skala Laboratorium,” Bab II, 2018.

I. A. Setiorini and A. F. Faputri, “E Evaluasi Kinerja Heat Exchanger Jenis Kondensor 1110-C Tipe Shell and Tube Berdasarkan Nilai Fouling Factor Pada Unit Purifikasi Di Ammonia Plant Pt X,” J. Tek. Patra Akad., vol. 14, no. 01, pp. 23–30, 2023, doi: 10.52506/jtpa.v14i01.188.

K. Silaipillayarputhur and H. Khurshid, “The design of shell and tube heat exchangers – A review,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 9, no. 1, pp. 87–102, 2019, doi: 10.24247/ijmperdfeb201910.

A. A. Abbasian Arani and R. Moradi, “Shell and tube heat exchanger optimization using new baffle and tube configuration,” Appl. Therm. Eng., vol. 157, no. May, 2019, doi: 10.1016/j.applthermaleng.2019.113736.

D. Kamilah, “Upaya Peningkatan Aktivitas dan Hasil Belajar Kinematika Gerak Lurus Melalui Strategi Siklus Ace Kelas XB SMA Negeri 2 Simpang Hilir,” J. Visi Ilmu Pendidik., 2015, [Online]. Available: https://jurnal.untan.ac.id/index.php/jvip/article/ View/17201

T. W. Lim and Y. S. Choi, “Thermal design and performance evaluation of a shell-and-tube heat exchanger using LNG cold energy in LNG fuelled ship,” Appl. Therm. Eng., vol. 171, no. February, p. 115120, 2020, doi 10.1016/j.applthermaleng.2020.115120.

X. Qian, S. W. Lee, and Y. Yang, “Heat transfer coefficient estimation and performance evaluation of shell and tube heat exchanger using flue gas,” Processes, vol. 9, no. 6, pp. 1–19, 2021, doi: 10.3390/pr9060939.

Ü. Ağbulut, "Prediction of performance, combustion, and emission characteristics for a CI engine at varying injection pressures," Energy, vol. 197, 2020, doi: 10.1016/j.energy.2020.117257.

M. S. Atikayanti, S. F. Nur, B. Santoso, and A. Ekayuliana, “Analisis Perbandingan Heat Exchanger Tipe Plate-Frame Dan Shell And Tube Pada Intercooler,” Semin. Nas. Tek. Mesin Politek. Negeri Jakarta, pp. 335–345, 2018.

Published
2024-11-27
How to Cite
Sulistiyo Nugroho, B., Sulistiyo Nugroho, B., Ivonne Aqilah, G., & Alvino, N. (2024). Assessment Of Complex Ii Fuel Oil Heat Exchanger Utilizing Heat Transfer Methodology . International Journal of Science, Technology & Management, 5(6), 1315-1324. https://doi.org/10.46729/ijstm.v5i6.1194