Implementation of Decision Tree Method to Predict Customer Interest in Internet Data Packages
Abstract
The use of smartphones is on the rise, making internet packages vital in everyday life. In Indonesia, mobile operators offer a variety of data packages to meet customer needs. Understanding preferences is important to making the right decisions when providing products that meet customer needs. However, not all packages are suitable for all customers. Telkomsel is one of the providers that can deliver consistent signals and a wide range of data packages, but it still has a relatively high price. The study uses decision tree methodology to analyze citizens' preferences about Telkomsel services, comparing the relative cost of data packages with other services. This research will use surveys with samples from different communities to determine the representativeness of the results and provide strategic recommendations for Telkomsel to improve customer satisfaction. The research methods employed in this study included data collection, preprocessing, data division, model design, prediction results, and result evaluation. The results showed accuracy levels of 98.7%, precision of 100%, recall of 98.7%, specificity of 100%, and an F1-score of 99.3%. This study demonstrates the effectiveness of the decision tree model in predicting customer interest in Telkomsel services. Despite some limitations, the findings provide valuable insights that Telkomsel can use to develop more effective marketing strategies.
Downloads
References
[2] K. AP, “Analysis Implementation Analytical Hierarchy Process Method and Weighted Product for Ranking Internet Package Selection System,” in Procedia of Engineering and Life Science, Universitas Muhammadiyah Sidoarjo, 2021. doi: doi.org/10.21070/pels.v2i0.1173.
[3] M. Harahap, F. Rozi, Y. Yennimar, and S. D. Siregar, “Analisis Wawasan Penjualan Supermarket dengan Data Science,” Data Sci. Indones., vol. 1, no. 1, pp. 1–7, 2021, doi: 10.47709/dsi.v1i1.1173.
[4] D. R. Prehanto, A. D. Indriyanti, K. D. Nuryana, S. Soeryanto, and A. S. Mubarok, “Use of Naïve Bayes classifier algorithm to detect customers’ interests in buying internet token,” J. Phys. Conf. Ser., vol. 1402, no. 6, p. 66069, 2019, doi: 10.1088/1742-6596/1402/6/066069.
[5] Y. D. Putra, M. Sudarma, and I. B. A. Swamardika, “Clustering History Data Penjualan Menggunakan Algoritma K-Means,” J. Hari. Reg., vol. 20, no. 2, 2021, doi: https://doi.org/10.24843/MITE.2021.v20i02.P03.
[6] T. N. Suharsono and M. Akbar, “Prediksi Minat Konsumen Sesuai Musim Menggunakan Algoritma K-Means Pada Perangkat Lunak Pemesanan Tempat Dan Makanan Online,” Infotronik J. Teknol. Inf. dan Elektron., vol. 2, no. 2, p. 124, 2017, doi: 10.32897/infotronik.2017.2.2.39.
[7] A. S. Mubarok, D. R. Prehanto, and M. Ali, “Deteksi Minat Beli Pelanggan Terhadap Produk Paket Internet Menggunakan Algoritma Naive Bayes Classifier,” Inov. J. Ilm. Inov. Teknol. Inf., vol. 3, no. 2, 2019, [Online]. Available: https://ejournal.unhasy.ac.id/index.php/inovate/article/view/737
[8] H. Susana, S. Khofidoh, and A. Al Afghani, “Implementasi Data Mining Metode C.45 untuk Memprediksi Peminat Kuota Internet pada Masa Covid 19,” MEANS (Media Inf. Anal. dan Sist., vol. 6, no. 2, pp. 155–157, 2022, doi: 10.54367/means.v6i2.1513.
[9] N. Pandiangan, M. L. C. Buono, and S. H. D. Loppies, “Implementation of Decision Tree and Naïve Bayes Classification Method for Predicting Study Period,” J. Phys. Conf. Ser., vol. 1569, no. 2, p. 22022, 2020, doi: 10.1088/1742-6596/1569/2/022022.
[10] M. A. Hafeez, M. Rashid, H. Tariq, Z. U. Abideen, S. S. Alotaibi, and M. H. Sinky, “Performance Improvement of Decision Tree: A Robust Classifier Using Tabu Search Algorithm,” Applied Sciences, vol. 11, no. 15. 2021. doi: 10.3390/app11156728.
[11] M. Méndez, M. G. Merayo, and M. Núñez, “Machine learning algorithms to forecast air quality: a survey,” Artif. Intell. Rev., vol. 56, no. 9, pp. 10031–10066, 2023, doi: 10.1007/s10462-023-10424-4.
[12] Z. Zhang, “Applications of the Decision Tree in Business Field BT - Proceedings of the 2021 3rd International Conference on Economic Management and Cultural Industry (ICEMCI 2021),” Atlantis Press, 2021, pp. 926–929. doi: 10.2991/assehr.k.211209.151.
[13] B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 01 SE-, pp. 20–28, Mar. 2021, doi: 10.38094/jastt20165.
[14] L. Cañete-Sifuentes, R. Monroy, and M. A. Medina-Pérez, “A Review and Experimental Comparison of Multivariate Decision Trees,” IEEE Access, vol. 9, pp. 110451–110479, 2021, doi: 10.1109/ACCESS.2021.3102239.
[15] D. Ignatov and A. Ignatov, “Decision Stream: Cultivating Deep Decision Trees,” in 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), 2017, pp. 905–912. doi: 10.1109/ICTAI.2017.00140.
[16] M. J. Awan, M. S. M. Rahim, H. Nobanee, A. Yasin, O. I. Khalaf, and U. Ishfaq, “A Big Data Approach to Black Friday Sales,” Intelligent Automation \& Soft Computing , vol. 27, no. 3. 2021. doi: 10.32604/iasc.2021.014216.
Copyright (c) 2024 International Journal of Science, Technology & Management
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.