Implementation Of The Support Vector Machine Method In Predicting Student Graduation
Abstract
Student graduation is an important indicator of the quality of education at a higher education institution. A high graduation rate not only indicates success in the learning process but also has a positive impact on the reputation of the institution. Conversely, a low graduation rate can be a signal of problems that require special attention. Various factors, both academic and non-academic, influence higher education institutions in ensuring timely student graduation. Therefore, we need a method that can accurately predict student graduation to carry out early intervention. This study aims to apply the support vector machine method in predicting student graduation. We chose this method due to its capacity to classify complex data. We use historical student data, such as Semester Achievement Index scores, as input variables to build a prediction model. We evaluate the model using precision, recall, and f1-score metrics. According to the study's findings, the support vector machine model's accuracy level is 71.20%. This method is good at predicting students who graduate with a precision of 95%, recall of 72%, and f1-score of 82%. However, the model's performance in predicting students who failed was less than satisfactory, with a precision of only 17%, a recall of 62%, and an f1-score of 26%. The imbalance in data between passed and failed students contributed to this result. The Support Vector Machine method effectively predicts student graduation for the majority class (passed), but requires special handling of the data imbalance to enhance the accuracy of predictions for the minority class (failed). Universities expect to use the results of this study to carry out early intervention and increase student graduation rates.
Downloads
References
Y. Apridiansyah, N. D. M. Veronika, and E. D. Putra, “Prediksi Kelulusan Mahasiswa Fakultas Teknik Informatika Universitas Muhammadiyah Bengkulu Menggunakan Metode Naive Bayes,” JSAI J. Sci. Appl. Informatics, vol. 4, no. 2, pp. 236–247, 2021, doi: 10.36085/jsai.v4i2.1701.
L. Setiyani, M. Wahidin, D. Awaludin, and S. Purwani, “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review,” Fakt. Exacta, vol. 13, no. 1, p. 35, 2020.
F. S. D. Alfia, “Determinan Good University Governance dalam Persaingan Kompetitif Berkelanjutan pada Perguruan Tinggi Negeri di Surabaya,” Universitas Pembangunan Nasional “Veteran,” 2024. [Online]. Available: https://repository.upnjatim.ac.id/26741/
C. N. Dengen, K. Kusrini, and E. T. Luthfi, “Implementasi Decision Tree Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu,” SISFOTENIKA, vol. 10, no. 1, p. 1, 2020, doi: 10.30700/jst.v10i1.484.
S. S. Muliani, V. Sihombing, and I. R. Munthe, “Implementation of Exploratory Data Analysis and Artificial Neural Networks to Predict Student Graduation on-Time,” Sink. J. dan Penelit. Tek. Inform., vol. 8, no. 2, pp. 1188–1199, 2024, doi: 10.33395/sinkron.v8i2.13658.
L. R. Pelima, Y. Sukmana, and Y. Rosmansyah, “Predicting University Student Graduation Using Academic Performance and Machine Learning: A Systematic Literature Review,” IEEE Access, vol. 12, no. February, pp. 23451–23465, 2024, doi: 10.1109/ACCESS.2024.3361479.
E. Alyahyan and D. Düştegör, “Predicting academic success in higher education: literature review and best practices,” Int. J. Educ. Technol. High. Educ., vol. 17, no. 1, 2020, doi: 10.1186/s41239-020-0177-7.
R. Asif, A. Merceron, S. A. Ali, and N. G. Haider, “Analyzing undergraduate students’ performance using educational data mining,” Comput. Educ., vol. 113, pp. 177–194, 2017, doi: https://doi.org/10.1016/j.compedu.2017.05.007.
N. Mduma, K. Kalegele, and D. Machuve, “A Survey of Machine Learning Approaches and Techniques for Student Dropout Prediction,” Data Sci. J., vol. 18, no. 1, Apr. 2019, doi: 10.5334/dsj-2019-014.
M. Vaarma and H. Li, “Predicting student dropouts with machine learning: An empirical study in Finnish higher education,” Technol. Soc., vol. 76, p. 102474, 2024, doi: https://doi.org/10.1016/j.techsoc.2024.102474.
Hamdani and T. Nasution, “Implementasi Algoritma K-Nearest Neighbor untuk Penentuan Kelulusan Mahasiswa Tepat Waktu,” J. Perangkat Lunak, vol. 2, no. 1, pp. 1–14, 2020, doi: 10.32520/jupel.v2i1.944.
A. Rohman and M. Rochcham, “Komparasi Metode Klasifikasi Data Mining untuk Prediksi Kelulusan Mahasiswa,” Neo Tek., vol. 5, no. 1, Jun. 2019, doi: 10.37760/neoteknika.v5i1.1379.
G. Suwardika and I. K. P. Suniantara, “Analisis Random Forest pada Klasifikasi Cart Ketidaktepatan Waktu Kelulusan Mahasiswa Universitas Terbuka,” BAREKENG J. Ilmu Mat. dan Terap., vol. 13, no. 3, pp. 179–186, 2019, doi: 10.30598/barekengvol13iss3pp177-184ar910.
J. Zeniarja, A. Salam, and F. A. Ma’ruf, “Seleksi Fitur dan Perbandingan Algoritma Klasifikasi untuk Prediksi Kelulusan Mahasiswa,” J. Rekayasa Elektr., vol. 18, no. 2, pp. 102–108, 2022, doi: 10.17529/jre.v18i2.24047.
V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170, 2020, doi: 10.22146/jnteti.v9i2.102.
T. Handhayani and L. Hiryanto, “Predicting and Analyzing the Length of Study-Time Case Study: Computer Science Students,” ComTech Comput. Math. Eng. Appl., vol. 8, no. 2, p. 107, 2017, doi: 10.21512/comtech.v8i2.3756.
A. Kesumawati and D. T. Utari, “Predicting patterns of student graduation rates using Naïve bayes classifier and support vector machine,” AIP Conf. Proc., vol. 2021, no. 1, p. 60005, Oct. 2018, doi: 10.1063/1.5062769.
A. Fadli, M. I. Zulfa, and Y. Ramadhani, “Performance Comparison of Data Mining Classification Algorithms for Early Warning System of Students Graduation Timeliness,” J. Teknol. dan Sist. Komput., vol. 6, no. 4, pp. 158–163, 2018, doi: 10.14710/jtsiskom.6.4.2018.158-163.
I. T. Utami, “Perbandingan Kinerja Klasifikasi Support Vector Machine (SVM) dan Regresi Logistik Biner Dalam Mengklasifikasikan Ketepatan Waktu Kelulusan Mahasiswa FMIPA UNTAD,” J. Ilm. Mat. Dan Terap., vol. 15, no. 2, pp. 256–267, 2018, doi: 10.22487/2540766x.2018.v15.i2.11361.
O. Bangun, H. Mawengkang, and S. Efendi, “Metode Algoritma Support Vector Machine (SVM) Linier Dalam Memprediksi Kelulusan Mahasiswa,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2006, 2022, doi: 10.30865/mib.v6i4.4572.
S. Wiyono and T. Abidin, “Comparative Study of Machine Learning KNN, SVM, and Decision Tree Algorithm to Predict Student’S Performance,” Int. J. Res. - GRANTHAALAYAH, vol. 7, no. 1, pp. 190–196, 2019, doi: 10.29121/granthaalayah.v7.i1.2019.1048.
Kaggle, “A GPA dataset gathered from a private university in Indonesia,” kaggle.com. Accessed: Jun. 13, 2024. [Online]. Available: https://www.kaggle.com/datasets/oddyvirgantara/on-time-graduation-classification.
Copyright (c) 2024 International Journal of Science, Technology & Management
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.