Characteristics Of Physical And Chemical Properties Of Soil After Gold Processing (Case Study Of Unlicensed Gold Mining In The District Sumbawa Regency, Indonesia)

  • Riza Hamkary Salam Magister Pertanian Lahan Kering, Pascasarjana Universitas Mataram, Mataram,Indonesia
  • Suwardji Suwardji Program Studi Ilmu Tanah, Universitas Mataram, Mataram, Indonesia.
  • Taufik Fauzi Program Studi Ilmu Tanah, Universitas Mataram, Mataram,Indonesia.
  • IGM Kusnarta Program Studi Ilmu Tanah, Universitas Mataram, Mataram,Indonesia.
Keywords: Mercury (Hg), former gold processing, physical and chemical properties of soil and polluted soil.

Abstract

The purpose of this study was to analyze the physical and chemical characteristics of the soil used for unlicensed gold processing in West Sumbawa Regency. This research was carried out in Kuang Village, Taliwang District, West Sumbawa Regency in September 2023. The criteria for soil sampling location is that the activity of the spindle has been inactive for 5 years, using mercury as a material for gold extraction and is in the home environment. This study was conducted by quantitative descriptive method or direct observation in the field and soil analysis in the Laboratory of soil chemistry and Biology, Faculty of Agriculture, University of Mataram. Furthermore, soil sampling was carried out using purposive sampling method or based on purpose with consideration of potential pollution. Based on the results, it can be seen that the physical characteristics of soil including clay with volume weight, specific gravity and porosity are quite dense soil with poor infiltration, while the chemical characteristics of soil include low fertility of both C-organic, CEC, soil pH, N and P soil. The concentration of Hg found in soil ranges from 1.42-15.83 ppm. In this case, mercury contaminated soil needs to be remediated using environmentally friendly materials, cheap and the availability of many in nature. Efforts that can be done is the use of green technology using phytoremediator plants and soil improvement materials, namely biochar. Therefore, it is necessary to conduct further research aimed at reducing the availability and mobility of mercury in the soil

Downloads

Download data is not yet available.

References

Akbar, M. (2023). Pengaruh Alterasi Hidotermal Terhadap Mineralisasi Berdasarkan Data Mikroskopis Sampel Batuan Daerah Samoan Raboya Pt. Sumbawa Barat Mineral (Sbm) Kecematan Taliwang Kabupaten Sumbawa Barat. [Skripsi]. Universitas Muhammadiyah Mataram. Mataram

Andayono, T., & Palinto, G. (2023). Hubungan Tekstur Tanah Terhadap Laju Infiltrasi di Daerah Pengembangan Permukiman Kota Padang. Journal of Civil Engineering and Vocational Education, 10(2), 355–364.

Aryanti, E., & Hera, N. (2019). Sifat Kimia Tanah Area Pasca Tambang Emas: (Studi Kasus Pertambangan Emas Tanpa Izin Di Kenegerian Kari Kecamatan Kuantan Tengah, Kabupaten Kuantan Singingi). Jurnal Agroteknologi, 9, 21. https://doi.org/10.24014/ja.v9i2.5681

Batu, H. M. R. P., Talakua, S. M., Siregar, A., & Osok, R. M. (2019). Status Kesuburan Tanah Berdasarkan Aspek Kimia dan Fisik Tanah di DAS Wai Ela, Negeri Lima, Kabupaten Maluku Tengah, Provinsi Maluku. Jurnal Budidaya Pertanian, 15(1), 1–12. https://doi.org/10.30598/jbdp.2019.15.1.1

Bobby J. Polii, & Desmi N. Sonya. (2002). Pendugaan Kandungan Merkuri Dan Sianida Di Daerah Aliran Sungai (Das) Buyat Minahasa. Ekoton, 2(1), 31–37.

BPS NTB. (2019). Provinsi Nusa Tenggara Barat Dalam Angka 2019.

Conesa, H. M., Angel, F., & Raquel, A. (2005). Heavy Metal Acumulation and Tolerance in Plant from Mine Tailings of the Semiarid Cartagena-La Union Mining District (SE Spain). Elsevier Science, 336(1), 1–11.

DLHK NTB. (2018). Laporan Kajian Teknis – Rencana Aksi Daerah Pengurangan dan Penghapusan Merkuri (RAD-PPM). https://www.goldismia.org/sites/default/files/2021-07/RAD PPM NTB_Pergub 64 Tahun 2020.pdf

Efendi, J., & Fatmalia, E. (2021). Studi Kelayakan Daerah Aliran Sungai Rea,Kecamatan Taliwang Kabupaten Sumbawa Barat dalamPengembangan Ekowisata. Jurnal Sanitasi Dan Lingkungan, 2(1), 139–145.

Fashola, M. O., Jeme, V. M. ., & Babalola, O. . (2016). Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. Int. J.Environ. Res. Public Health, 13(1047). https://doi.org/10.3390/ijerph13111047

Gabriel, M. C., & Williamson, D. G. (2004). Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environmental Geochemistry and Health, 26, 421–428.

Henrianto, A., Okalia, D., & Mashadi, M. (2019). Uji Beberapa Sifat Fisika Tanah Bekas Tambang Emas Tanpa Izin ( Peti ) Di Tiga Kecamatan Di Daratan Sepanjang Sungai Kuantan. Jurnal Agronomi Tanaman Tropika (Juatika), 1, 19–31. https://doi.org/10.36378/juatika.v1i1.41

Hesterberg, D., Chouw, J. W., Hutchinson, K. J., & Sayers, D. E. (2001). Bonding of Hg(II) to reduced organic sulphur in humic acid as affected by S/Hg ratio. Environmental Science and Technology, 35(2741).

Hurum, P. H. (2023). Kajian Sifat Fisik Tanah Ustifluvents Sekotong Terkait Kandungan Merkuri (Hg) Dalam Tanah. Universitas Mataram.

Hurum, P. H., Arifin, Z., Padusung, & Suwardji. (2023). Kajian Sifat Fisik Tanah Ustifluvents Sekotong Terkait Kandungan Merkuri (Hg) Dalam Tanah. Jurnal Sains Teknologi Dan Lingkungan, 9(3), 175–190.

Ibe, I., Ogbulie, J., Chibuogwu, O., Nwanze, P., Chinedu, I., & Okechi, R. (2014). Effects of Palm Oil Mill effluent (Pome) on soil bacteria and enzymes at different seasons. International Journal of Current Microbiology and Applied Sciences, 3(10), 928–934.

Inbaraj, B. S., Wang, J., Lu, J., Siao, F., & Chen, B. (2009). Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid). Bioresour. Technol., 100, 200–207.

Jackson, T. A., Kipphut, G., Hesslein, R. H., & Schindler, D. W. (1980). Experimental study of trace metal chemistry in soft water lakes at different pH levels. Canadian Journal of Fish and Aquatic Science, 37, 387.

Khan, N. H., Mohammad, N., & Bashir, A. (2015). Study of Heavy Metals in Soil and Wheat Crop and their Transfer to Food Chain. Journal of Sustainable Agriculture, 32(1), 1–10. https://doi.org/10.17582/journal.sja/2016/32.2.70.79

Khasanah, U., Mindari, W., & Suryaminarsih, P. (2021). Kajian Pencemaran Logam Berat Pada Lahan Sawah Kawasan Industri Kabupaten Sidoarjo. Jurnal Teknik Kimia, 15(2), 73–81.

Linhares, J. M., Bastos, W. R., Almeida, R. D., Manzatto, Â. G., Holanda, I.B., Recktenvald, M.C., & Linhares, D. P. (2019). Spatial Analysis Of Mercury Levels As Indicator Of Environmental Changes And Soil Quality In Agroforestry Systems In Southern Amazon. Caminhos de Geografia, 20(160–181). https://doi.org/10.14393/RCG207145352

Lyu, H. H., Xia, S. Y., Tang, J. C., Zhang, Y. R., Cao, B., & Shen, B. X. (2019). Thiol-Modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+. J. Haz. Mater, 384.

Mirdat, Patadungan, Yosep, S., & Isrun. (2013). Status Logam Berat merkuri (Hg) dalam Tanah pada Kawasan Pengolahan Tambang Emas di Kelurahan Poboya, Kota Palu. J. Agrotekbis, 1(2), 127–134.

Mohan, M., Chandran, M. S. S., Jayasooryan, K. K., & Ramasamy, E. V. (2014). Mercury in the sediments of Vembanad Lake, western coast of India. Environ Monit Assess, 186, 3321–3336.

Muna, N., Prasetyo, Y., & Sasmito, B. (2020). Analisis Perbandingan Metode Pca (Principal Component Analysis) Dan Indeks Mineral Lempung Untuk Pemodelan Sebaran Kandungan Bahan Organik Tanah Menggunakan Citra Satelit Landsat Di Kabupaten Kendal. Jurnal Geodesi Undip, 9(1), 325–334.

Ningsih, K. S., Mukhlis, & Jamilah. (2016). Pemberian Zat Pengatur Tumbuh Pada Tanaman Kedelai Untuk Meningkatkan Pertumbuhan Dan Serapan Hara Di Tanah Ultisol. Jurnal Agroekoteknologi, 4(4), 2393–2399.

Nursyamsi, D., & Setyorini, D. (2009). Soil P Availibility in Neutral and Alkaline Soils. Jurnal Tanah Dan Iklim2, 30, 25–36.

Perryman, C. R., Wirsing, J., Bennett, K. A., Brennick, O., Perry, A. L., Williamson, N., & Ernakovich, J. G. (2020). Heavy Metals in The Arctic: Distribution and Enrichment of Five Metals in Alaskan Soils. PLoS One, 15(6). https://doi.org/10.1371/journal.pone.0233297

Purwanto. (2012). Dasar-dasar Ilmu Tanah. Kanisius.

Qishlaqi, A., & Moore, F. (2007). Statistical analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khoshk river Banks, Shiraz, Iran. American-Eurasian Journal of Agricultural and Environmental Sciences, 2(5), 565–573.

Qu, R., Han, G., Liu, M., & Li, X. (2019). The mercury behavior and contamination in soil profiles in mun river basin, Northeast Thailand. International Journal of Environmental Research and Public Health, 16(21). https://doi.org/https://doi.org/10.3390/ijerph16214131

Roca, N. (2015). Heavy metal background levels in rural soils: a case study in Pampean soils (Argentina). Ciencia Del Suelo, 33(2), 283–292.

Rohim, S. E., Marlina, N., Rosimah, Lusia, M., & Aminah, S. (2023). Dasar-dasar Ilmu Tanah. Press: Universitas Sriwijaya.

Rosyidah, E., & Wirosoedarmo, R. (2013). Pengaruh Sifat Fisik Tanah pada Konduktivitas Hidrolik Jenuh di 5 Penggunaan Lahan (Studi Kasus di Kelurahan Sumbersari Malang) - Effect of Soil Physical Properties on Saturated Hydraulic Conductivity in The 5 Land Use (A Case Study in Sumbersari Malang). Journal or Agritech, 33(3), 340–345. https://doi.org/10.22146/agritech.9557

Ruslan, & Khairuddin. (2011). Studi Potensi Pencemaran Lingkungan Dari Kegiatan Pertambangan Emas Rakyat Poboya Kota Palu. Jurnal Akta Kimia Indonesia, 3(1), 27–31. https://doi.org/10.20956/ica.v3i1.5972

Shaheen, A., & Iqbal, j. (2018). Spatial distribution and mobility assessment of carcinogenic heavy metals in soil profiles using geostatistics and random forest, Boruta Algorithm. Sustainability, 10. https://doi.org/10.3390/su10030799

Sumarjono, E. (2020). Kompleksitas Permasalahan Merkuri Dalam Pengolahan Bijih Emas Berdasarkan Perspektif Teknis Lingkungan Manusia Dan Masa Depan. Kurvatek, 5(1), 113–122.

Sun, L., Guoa, D., Liu, K., Meng, H., Zheng, Y., Yuan, F., & Zhu, G. (2019). Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of tangshan, China. Catena, 175, 101–109.

Wang, J., Feng, X., Anderson, C. W. N., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites – A review. Journal of Hazardous Materials, 221–222, 1–18. https://doi.org/https://doi.org/10.1016/j.jhazmat.2012.04.035

Wang, X., Sun, Y., Li, S., & wang, H. (2019). Spatial distribution and ecological risk assessment of heavy metals in soil from the raoyanghe wetland, China. PloS ONe, 14(8).

WHO. (2017). Mercury and Health. https://www.who.int/news-room/factsheets/detail/mercury-and-health#:~:text=Exposure to mercury20– even small,%2C kidneys%2C skin and eyes

Zhang, Y., Tian, Y., Shen, M., & Zeng, G. (2018). Heavy metals in soils and sediments from Dongting Lake in China: occurrence, sources, and spatial distribution by multivariate statistical analysis. Environmental Science and Pollution Research International, 25, 13687–13696. https://doi.org/10.1007/s11356-018-1590-5

Zhu, H., Bing, H., Yi, H., Wu, Y., & Sun, Z. (2018). Spatial distribution and contamination assessment of heavy metals in surface sediments of the caofeidian adjacent sea after the land reclamation, Bohai Bay. Journal of Chemistry, 2018(108), 1–13. https://doi.org/10.1155/2018/2049353.

Published
2024-05-28
How to Cite
Hamkary Salam, R., Suwardji, S., Fauzi, T., & Kusnarta, I. (2024). Characteristics Of Physical And Chemical Properties Of Soil After Gold Processing (Case Study Of Unlicensed Gold Mining In The District Sumbawa Regency, Indonesia). International Journal of Science, Technology & Management, 5(3), 591-599. https://doi.org/10.46729/ijstm.v5i3.1095
Section
Articles