Exploring The Factors Affecting Consumer Preparedness For Smart Home Technology In Indonesia

  • Endah Novita Master of Management student at Telkom University, Indonesia.
  • Adhi Prasetio lecturer in the Management Department of the Faculty of Economics and Business, Telkom University, Bandung, Indonesia.
Keywords: Smart Home Technology, Technology Acceptance Model, Technology Readiness, Price Value, and Perceived Risk.

Abstract

SSmart home technology is becoming more popular globally, including in Indonesia.
However, its adoption is still early, mainly due to the public's limited awareness of
this technology. This study uses the Technology Readiness and Acceptance Model
(TRAM) to assess individuals' readiness to embrace smart home technology. This
research was conducted using SEM PLS with 271 respondents selected through
purposive sampling, using 34 questions with a 5-point Likert scale. Positive outlook
and user-friendliness have a role in how people value smart home technology,
according to the study's findings. Optimism, inventiveness, and discomfort all affect
how easy something is to use. Anxiety and unease can play a role in how we interpret
danger. Smart home technology adoption is influenced by factors such as its
perceived value, simplicity of use, and cost significantly and positively.

 

Downloads

Download data is not yet available.

References

Aldossari, M. Q., & Sidorova, A. (2020). Consumer Acceptance of Internet of Things (IoT): Smart Home

Context. Journal of Computer Information Systems, 60(6), 507–517.

Basarir-Ozel, B., Turker, H. B., & Nasir, V. A. (2022). Identifying the Key Drivers and Barriers of Smart Home

Adoption: A Thematic Analysis from the Business Perspective. Sustainability (Switzerland), 14(15).

Baudier, P., Ammi, C., & Deboeuf-Rouchon, M. (2020). Smart home: Highly-educated students’ acceptance.

Technological Forecasting and Social Change, 153. https://doi.org/10.1016/j.techfore.2018.06.043

Buyle, R., Van Compernolle, M., Vlassenroot, E., Vanlishout, Z., Mechant, P., & Mannens, E. (2018).

“Technology readiness and acceptance model” as a predictor for the use intention of data standards in smart

cities. Media and Communication, 6(4Theoretical Reflections and Case Studies), 127–139.

Chen, M. F., & Lin, N. P. (2018). Incorporation of health consciousness into the technology readiness and

acceptance model to predict app download and usage intentions. Internet Research, 28(2), 351–373.

Cimbaljević, M., Demirović Bajrami, D., Kovačić, S., Pavluković, V., Stankov, U., & Vujičić, M. (2023).

Employees’ technology adoption in the context of smart tourism development: the role of technological

acceptance and technological readiness. European Journal of Innovation Management.

Elian, A. A., & Salehudin, I. (2022). Hey Google: Does Environmental Beliefs and Perceived Privacy Risk

Influence Potential User’s Intention to Use a Smart Home System in Indonesia? Smart City, 2(1).

Erdoǧmu, N., & Esen, M. (2011). An investigation of the effects of technology readiness on technology

acceptance in e-HRM. Procedia - Social and Behavioral Sciences, 24, 487–495.

Farzianpour, F., Pishdar, M., Shakib, M. D., & Toloun, M. R. S. H. (2014). Consumers’ perceived risk and its

effect on adoption of online banking services. American Journal of Applied Sciences, 11(1), 47–56.

Ghozali, I., & Latan, H. (2015). Partial Least Squares Konsep, Teknik dan Aplikasi Menggunakan Program

SmartPLS 3.0 Untuk Penelitian Empiris. Universitas Diponegoro.

Godoe, P., Trond, &, & Johansen, S. (2012). Understanding adoption of new technologies. In Journal of

European Psychology Students (Vol. 3).

Gu, W., Bao, P., Hao, W., & Kim, J. (2019). Empirical examination of intention to continue to use smart home

services. Sustainability (Switzerland), 11(19). https://doi.org/10.3390/su11195213

Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial Least Squares

Structural Equation Modeling (PLS-SEM) Using R. Springer. http://www.

Hargreaves, T., Wilson, C., & Hauxwell-Baldwin, R. (2018). Learning to live in a smart home. Building

Research and Information, 46(1), 127–139. https://doi.org/10.1080/09613218.2017.1286882

Indotelko. (2020, April 28). Gurihnya pasar IoT di Indonesia. Indotelko.Com.

https://www.indotelko.com/read/1588044287/telkomsel-roambee

Indrawati, Raman, M., Wai, C. K., Ariyanti, M., Mansur, D. M., Marhaeni, G. A. M. M., Tohir, L. M., Gaffar,

M. R., Has, M. N., & Yuliansyah, S. (2017). Perilaku Konsumen Individu dalam Mengadopsi Layanan Berbasis

Teknologi Informasi & Komunikasi.

International Journal of Science, Technology & Management ISSN: 2722 - 4015

http://ijstm.inarah.co.id

Ismail, H. A. (2016). Intention to Use Smartphone Through Perceived Compability, Perceived Usefulness, and

Perceived Ease of Use. Jurnal Dinamika Manajemen, 7(1), 1–10. http://jdm.unnes.ac.id

Jamaludin, F. (2020, March 10). Regulasi Jadi Salah Satu Tantangan IoT. Merdeka.Com.

Ji, W., & Chan, E. H. W. (2020). Between users, functions, and evaluations: Exploring the social acceptance of

smart energy homes in China. Energy Research and Social Science, 69.

https://doi.org/10.1016/j.erss.2020.101637

Kampa, R. K. (2023). Combining technology readiness and acceptance model for investigating the acceptance of

m-learning in higher education in India. Asian Association of Open Universities Journal.

Keong, O. C., Leong, T. K., & Bio, C. J. (2020). Perceived Risk Factors Affect Intention To Use FinTech.

Journal of Accounting and Finance in Emerging Economies, 6(2), 453–463.

www.publishing.globalcsrc.org/jafee

Kim, T., & Chiu, W. (2019). Consumer acceptance of sports wearable technology: the role of technology

readiness. International Journal of Sports Marketing and Sponsorship, 20(1), 109–126.

Kumar, S., & Dami, M. (2021). Integrating Diffusion of Innovation to TechnologyAcceptance Model: A Survey

of Millennials’ Intention to Use E-Money Card. Advances in Economics, Business and Management Research,

, 191–198.

Lairan, N. (2022, October 28). Iot Sebagai Gerbang Teknologi Masa Depan Di Dunia, Apakah Indonesia Sudah

Siap? Binus University.

Lin, J. S. C., & Chang, H. C. (2011). The role of technology readiness in self-service technology acceptance. In

Managing Service Quality (Vol. 21, Issue 4, pp. 424–444). https://doi.org/10.1108/09604521111146289

Marikyan, D., Papagiannidis, S., & Alamanos, E. (2019). A systematic review of the smart home literature: A

user perspective. Technological Forecasting and Social Change, 138, 139–154.

Mashal, I., Shuhaiber, A., & Daoud, M. (2020). Factors influencing the acceptance of smart homes in Jordan.

Int. J. Electronic Marketing and Retailing, 11(2), 113–142.

Moses. (2023, May 15). Smart Home: Mengoptimalkan Teknologi untuk Kehidupan yang Lebih Nyaman.

Tiperumah.Id.

Mulcahy, R., Letheren, K., McAndrew, R., Glavas, C., & Russell-Bennett, R. (2019). Are households ready to

engage with smart home technology? Journal of Marketing Management, 35(15–16), 1370–1400.

Nafia, Z. I., Hidayati, D., & Sulisworo, D. (2023). The Application of the Technology Readiness Acceptance

Model on Education. Journal of Novel Engineering Science and Technology, 2(01), 9–15.

Noer, K. U. (2021). Pengantar Sosiologi Untuk Mahasiswa Tingkat Dasar. Perwatt.

Nugroho, M. A., & Andryzal, F. M. (2017). Effects of Technology Readiness Towards Acceptance of

Mandatory Web-Based Attendance System. Procedia Computer Science, 124, 319–328.

Park,E.,Kim,S.,Kim,Y.S.,&Kwon,S.J.(2018).Smart home services as the next mainstream of the ICT industry:

determinants of the adoption of smart home services. Universal Access in the Information Society,17, 175–190.

Pradhan, M. K., Oh, J., & Lee, H. (2018). Understanding travelers’ behavior for sustainable smart tourism: A

technology readiness perspective. Sustainability (Switzerland), 10(11). https://doi.org/10.3390/su10114259

Putra, G., & Ariyanti, M. (2013). Pengaruh Faktor-faktor dalam Modified Unified Theory of Acceptance and

Use of Technology 2 (UTAUT 2) Terhadap Niat Prospective Users untuk Mengadopsi Home Digital Services

PT.Telkom di Surabaya. Jurnal Manajemen Indonesia, 12(4), 59–76.

Rudiansyah, A. (2022, October). 6 Tantangan IoT dan Cara Memperbaikinya. ACT Communications.

Sequeiros, H., Oliveira, T., & Thomas, M. A. (2021). The Impact of IoT Smart Home Services on Psychological

Well-Being. Information Systems Frontiers, Springer, 24(3), 1009–1026.

Shi, Y. (2018). The Impact of Consumer Innovativeness on the Intention of Clicking on SNS Advertising.

Modern Economy, 09(02), 278–285. https://doi.org/10.4236/me.2018.92018

Shin, J., Park, Y., & Lee, D. (2018). Who will be smart home users? An analysis of adoption and diffusion of

smart homes. Technological Forecasting and Social Change, 134, 246–253.

Shuhaiber, A.,& Mashal, I. (2019). Understanding users’ acceptance of smart homes. Technology in Society, 58.

Statista. (n.d.). Smart Home - Indonesia. Statista.Com. Retrieved April 15, 2023, from

https://www.statista.com/outlook/dmo/smart-home/indonesia

Wicaksono, S. R. (2022). Teori Dasar Technology Acceptance Model. CV.Seribu Bintang.

Zhang, W., & Liu, L. (2022). Unearthing consumers’ intention to adopt eco-friendly smart home services: an

extended version of the theory of planned behavior model. Journal of Environmental Planning and

Management, 65(2), 216–239. https://doi.org/10.1080/09640568.2021.1880379.

Published
2024-01-30
How to Cite
Novita, E., & Prasetio, A. (2024). Exploring The Factors Affecting Consumer Preparedness For Smart Home Technology In Indonesia. International Journal of Science, Technology & Management, 5(1), 332-339. https://doi.org/10.46729/ijstm.v5i1.1063