Isolation and Characterization of Lactic Acid Bacteria from Rice Washing Water Waste

  • Zainal Abidin Plantation Plant Cultivation Study Program Samarinda State Agricultural Polytechnic Samarinda, Indonesia
  • La Mudi, Rusmini Plantation Plant Cultivation Study Program Samarinda State Agricultural Polytechnic Samarinda, Indonesia
  • Nur Hidayat Plantation Plant Cultivation Study Program Samarinda State Agricultural Polytechnic Samarinda, Indonesia
  • Silvi Dwi Mentari Plantation Plant Cultivation Study Program Samarinda State Agricultural Polytechnic Samarinda, Indonesia
  • Daryono Daryono Plantation Plant Cultivation Study Program Samarinda State Agricultural Polytechnic Samarinda, Indonesia
  • Dody Prima Plantation Plant Cultivation Study Program Samarinda State Agricultural Polytechnic Samarinda, Indonesia
Keywords: Isolation, Rice Washing Water, Lactic Acid Bacteria,and Fermentation.


Rice washing water is still considered as household waste because its benefits for plants are not widely known. Rice washing water is obtained from water that is washed many times before cooking which is rich in carbohydrate content in the form of starch and glucose and vitamins. Lactic acid bacteria (LAB) require sugar or carbohydrates from rice washing water which is used as food to support metabolic activity and microbial cell proliferation. LAB is also included in a large group of microorganisms that physiologically produce lactic acid as the main metabolic product. LAB are classified as good bacteria so they are widely used as food processing products, especially those related to human digestion. The use of lactic acid bacteria in the agricultural sector is still very minimal, especially as a biodecomposer, even though LAB has the ability to produce cellulase enzymes which are very important in the breakdown of lignin in organic matter. This study aims to determine the presence of lactic acid bacteria in rice washing water fermentation. Isolation of lactic acid bacteria using pour plate method with MRSA (de Man Rogosa Sharpe Agar) media. Lactic acid bacteria isolates obtained were then characterized morphologically, physically, and biochemically. The results of isolation and characterization obtained four isolates with the codes AL-01, AL-02, AL-03, and AL-04. Four LAB isolates showed gram-positive, catalase-positive, non-motile, non-H2S, and IAA-positive results.


Download data is not yet available.


Z. Abidin et al., “Utilization of Mole (Local Microorganism) of Mas Conch and Age of Seed on Rice Growth

and Production,” J. Agriment, vol. 7, no. 2, pp. 112–119, 2022, doi: 10.51967/jurnalagriment.v7i2.1755.

L. L. Antunes, A. L. Back, M. L. B. C. Kossar, A. G. Spessato, E. Colla, and D. A. Drunkler, “Prebiotic potential

of carbohydrates from defatted rice bran – Effect of physical extraction methods,” Food Chem., vol. 404, p.

, Mar. 2023, doi: 10.1016/J.FOODCHEM.2022.134539.

Y. ZANG et al., “Irrigation regimes modulate non-structural carbohydrates remobilization and improve grain

filling in rice (Oryza sativa L.) by regulating starch metabolisms,” J. Integr. Agric., May 2023, doi:


D. Wang, H. Fan, B. Wang, L. Liu, Y. Shi, and N. Zhang, “Effects of lactic acid bacteria fermentation on the

physicochemical and structural characteristics of starch in blends of glutinous and japonica rice,” J. Food Sci.,

vol. 8, no. 44, pp. 1623–1639, 2023, doi:

M. Watanabe, M. Makino, N. Kaku, M. Koyama, K. Nakamura, and K. Sasano, “Fermentative l-(+)-lactic acid

production from non-sterilized rice washing drainage containing rice bran by a newly isolated lactic acid bacteria

without any additions of nutrients,” J. Biosci. Bioeng., vol. 115, no. 4, pp. 449–452, Apr. 2013, doi:


A. Chithambharan, L. Pottail, and S. C. Sharma, “Conventional and Scientific uses of Rice-washed water: A

Systematic Review,” J Food Sci Technol, 2023, doi:

Y. L. Limbongan, “The Effect of Reeds and Washed Rice Water on The Growth and Production of White Oyster

Mushroom (Pleurotus ostreatus),” J. World Sci., vol. 2, no. 5, pp. 622–631, 2023, doi: 10.58344/jws.v2i5.288.

Srimaulinda, K. Nurtjahja, and R. Riyanto, “Pengaruh Konsentrasi Air Kelapa dan Air Cucian Beras dan Lama

Perendaman Terhadap Perkecambahan Benih Kacang Hijau (Vigna radiata L.),” J. Ilm. Biol. UMA, vol. 3, no. 2,

pp. 62–72, 2021, doi: 10.31289/jibioma.v3i2.751.

C. Chatgasem, W. Suwan, M. Attapong, W. Siripornadulsil, and S. Siripornadulsil, “Single-step conversion of

rice straw to lactic acid by thermotolerant cellulolytic lactic acid bacteria,” Biocatal. Agric. Biotechnol., vol. 47,

p. 102546, 2023, doi:

P. J. Yeboah, S. A. Ibrahim, and A. Krastanov, “A Review of fermentation and the nutritional requirements for

effective growth media for lactic acid bacteria,” Food Sci. Appl. Biotechnol. 2023, 6(2), 215-240Food Sci. Appl.

Biotechnol. home pagewww.ijfsab.comhttps//✉Corresponding authorSalam

Ibrahim, Food Microbiol. Biotechnol. Lab. 17, vol. 6, no. 2, pp. 215–240, 2023, doi:

T. F. Borgonovi et al., “Dual Role of Probiotic Lactic Acid Bacteria Cultures for Fermentation and Control

Pathogenic Bacteria in Fruit-Enriched Fermented Milk,” Probiotics & Antimicro. Prot., 2023, doi:

M. Tahir et al., “Response of fermentation quality and microbial community of oat silage to homofermentative

lactic acid bacteria inoculation,” Front. Microbiol., vol. 13, no. January, pp. 1–13, 2023, doi:


J. R. Lamont, O. Wilkins, M. Bywater-Ekegärd, and D. L. Smith, “From yogurt to yield: Potential applications

of lactic acid bacteria in plant production,” Soil Biol. Biochem., vol. 111, pp. 1–9, 2017. [14] D. Arisanti

and S. W. Pade, “Goroho Banana Peel Through Dry Culture Test LAB (Lactic Acid Bacteria),” J Tech, vol. 7,

no. 2, pp. 80–85, 2019, doi:

B. N. Abdul Hakim, N. J. Xuan, and S. N. H. Oslan, “A Comprehensive Review of Bioactive Compounds from

Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry,” Foods, vol. 12,

no. 15, 2023, doi: 10.3390/foods12152850.



calabura L.),” J. Basic Sci., vol. 9, no. 2, pp. 42–49, 2021, doi: 10.21831/jsd.v9i2.34523.

N. Khakipour, K. Khavazi, H. Mojallali, E. Pazira, and H. Asadirahmani, “Production of Auxin Hormone by

Fluorescent Pseudomonads,” J. Agric. Environ. Sci, vol. 4, no. 6, pp. 687–692, 2008.

N. P. Dewi, S. Poddar, R. P. Rai, E. Purwati, D. Abdullah, and Y. E. Pratama, “The Potential Lactic Acid

Bacteria from Dadiah Sianok Bukittinggi City, West Sumatera as Probiotic,” Res. J. Pharm. Technol., vol. 16,

no. 2, pp. 627–634, 2023, doi: 10.52711/0974-360X.2023.00107.

I. Azhara, M. Rais, A. Sukainah, and R. P. Putra, “Isolation and Identification of Lactic Acid Bacteria in

Spontaneous Fermentation of Robusta Coffee Beans from Bantaeng,” J. Agric. Technol., vol. 23, no. 1, p. 49,

International Journal of Science, Technology & Management ISSN: 2722 - 4015

J. Yoshimura, H. Ogura, and J. Oda, “Can Gram staining be a guiding tool for optimizing initial antimicrobial

agents in bacterial infections?,” Acute Med. Surg., vol. 10, no. 1, pp. 1–7, 2023, doi: 10.1002/ams2.862.

R. Amelia, K. Philip, Y. E. Pratama, and E. Purwati, “Characterization and probiotic potential of lactic acid

bacteria isolated from dadiah sampled in West Sumatra,” Food Sci. Technol., vol. 41, no. December, pp. 746–

, 2021, doi: 10.1590/fst.30020.

A. A. Daniel, A. O. Egbebi, and A. A. Onasanya, “Isolation and Identification of Lactic Acid Bacteria from

Spontaneously Fermented Kunun-zaki using RAPD-PCR Analysis,” ABUAD Int. J. Nat. Appl. Sci., vol. 3, no.

, pp. 34–42, 2023, doi: 10.53982/aijnas.2023.0301.07-j.

I. Trawczyńska, “New Method of Determining Kinetic Parameters for Decomposition of Hydrogen Peroxide by

Catalase,” Catalysts, vol. 10, no. 3, p. 323, 2020, doi:

M. M. Goyal and A. Basak, “Human catalase: Looking for complete identity,” Protein Cell, vol. 1, no. 10, pp.

–897, 2010, doi: 10.1007/s13238-010-0113-z.

A. A. Putri, Erina, and Fakhrurrazi, “Isolation of Lactic Acid Bakteria Genus Lactobacillus from Feces of

Sambar Deer (Cervus unicolor),” Jimvet, vol. 2, no. 1, pp. 170–176, 2018.

R. Whittenbury, “Hydrogen Peroxide Formation and Catalase Activity in the Lactic Acid Bacteria.,” J. Gen.

Microbiol., vol. 35, no. 1959, pp. 13–26, 1964, doi: 10.1099/00221287-35-1-13.

F. Zahro, “Isolasi Dan Identifikasi Bakteri Asam Laktat Asal Fermentasi Markisa Ungu (Passiflora edulis var.

Sims.) Sebagai Penghasil Eksopolisakarida,” Universitas Islam Negeri Maulana Malik Ibrahim Malang, 2014.

A. . Yousef and C. Clastrom, “Food Microbiology (A Laboratory Manual). Wiley-Interscience, John Wiley and

Sons,” Inc. Ohiostate University. USA, 2003.

Lawalata, H. Joane, Rompas, C. Ferdina, Kansile, and E. Fridayanti, “Isolasi dan Identifikasi Bakteri Asam

Laktat dari Fermentasi Anggur Buah Pala (Myristica fragransHoutt).,” J. Sains, Mat. dan Edukasi, vol. 8, no. 1,

pp. 1–6, 2020.

M. M. Nuryady, A. Aisha, D. Aulia, and A. Savitri, “Research trends in isolation and identification of bacteria

from Indonesia with various roles: Review Article,” J. Biotechnol. Nat. Sci., vol. 1, no. 2, pp. 80–87, 2022, doi:


K. N. Salsabilla and G. Trimulyono, “Isolation and Antagonist Test of Lactic Acid Bacteria from Fermented

Kepok Banana against Escherichia coli,” LenteraBio Berk. Ilm. Biol., vol. 11, no. 3, pp. 430–440, 2022, doi:

Z. Chen, X. Leng, and F. et al. Zhou, “Screening and identification of probiotic Lactobacilli from the infant gut

microbiota to alleviate lead toxicity,” Probiotics & Antimicro. Prot., vol. 15, pp. 821–831, 2022, doi:

M. Naulandari, R. Kurniatuhadi, and Rahmawati, “Bakteri Asam Laktat yang Diisolasi dari Rebung Bambu

Apus (Gigantochloa apus) yang Difermentasi,” Life Sci., vol. 12, no. 1, pp. 18–31, 2023, [Online]. Available:

Khushboo, A. Karnwal, and T. Malik, “Characterization and selection of probiotic lactic acid bacteria from

different dietary sources for development of functional foods,” Front. Microbiol., vol. 14, 2023, doi:


A. Khusro et al., “Assessment on In Vitro Probiotic Attributes of Lactobacillus plantarum Isolated From Horse

Feces,” J. Equine Vet. Sci., vol. 107, p. 103769, 2021, doi:

S. Denaya, R. Yulianti, A. Pambudi, and Y. Effendi, “Novel microbial consortium formulation as plant growth

promoting bacteria (PGPB) agent,” IOP Conf. Ser. Earth Environ. Sci., vol. 637, no. 1, 2021.

A. R. Rao and C. R. R. Vyas, “Exploring the Plant Growth Promotion and Antagonistic Properties of Lactic

Acid Bacteria: a Comprehensive Study,” Int. J. Adv. Sci. Res., vol. 03, no. 05, pp. 43–46, 2023, doi:


G. A. K. Sutariati, Muhidin, N. M. Rahni, L. Mudi, R. R. Maharani, and G. N. A. Wibawa, “The effectiveness of

endo-rhizo bacterial isolated from areca nut rizosphere (Areca cathecu L.) in breaking dormancy and

improvement of seed vigor,” IOP Conf. Ser. Earth Environ. Sci., vol. 807, no. 4, 2021.

E. Suryanti, Dewi Chusniasih, Muhammad Asril, I. Agus Rini, W. P. Antika, and N. Rahmah, “Bioprospeksi

Bakteri Asal Akar Nanas (Ananas comosus L. Merr) Lahan Gambut Kayu Agung, Sumatra Selatan, sebagai

Agen Biostimulan dan Bioprotektan,” J. Ilmu Pertan. Indones., vol. 28, no. 3, pp. 352–360, 2023.

Y. T. Murindangabo, M. Kopecký, K. Perná, T. G. Nguyen, P. Konvalina, and M. Kavková, “Prominent use of

lactic acid bacteria in soil-plant systems,” Appl. Soil Ecol., vol. 189, p. 104955, Sep. 2023, doi:


How to Cite
Abidin, Z., Mudi, Rusmini, L., Hidayat, N., Dwi Mentari, S., Daryono, D., & Prima, D. (2024). Isolation and Characterization of Lactic Acid Bacteria from Rice Washing Water Waste . International Journal of Science, Technology & Management, 5(1), 184-191.

Most read articles by the same author(s)