Implementation of the K-Means Clustering Method in Clustering Poor Population in Bandar Kumbul Village, Labuhanbatu Regency

  • Aulia Maharani Faculty of Science and Technology, Universitas Labuhanbatu, Sumatera Utara Indonesia
  • Gomal Juni Yanris Faculty of Science and Technology, Universitas Labuhanbatu, Sumatera Utara Indonesia
  • Fitri Aini Nasution Faculty of Science and Technology, Universitas Labuhanbatu, Sumatera Utara Indonesia.
Keywords: Bandar Kumbul, Clustering, Elbow Method, K-Means, and Poverty.

Abstract

Poverty is one of the crucial social problems in rural areas. The problem of poverty in rural areas is increasingly in the spotlight because of its broad impact on the community's economic and social sustainability. The varying levels of poverty require an appropriate analytical approach to design effective intervention programs. In an effort to understand and address this problem, this study uses the K-Means Clustering method to group the poor population. We use K-Means clustering to identify and group hamlets based on their poverty levels. This study aims to categorize the hamlets in Bandar Kumbul Village into multiple clusters according to their poverty levels, thereby identifying which hamlets necessitate more focused attention. The research methods used include collecting data on the number of poor people from 2013 to 2022 in each hamlet, data preprocessing, applying the Elbow method to determine the optimal number of clusters, and applying the K-Means Clustering algorithm to group the hamlets. The results of the study show that there are three main clusters with different characteristics. Cluster 0 includes Hutaimbaru and Mailil Julu hamlets with high poverty levels. Cluster 1 only includes the Pasir Sidimpuan hamlet, which has medium poverty levels. Cluster 2 includes Aek Mardomu, Bandar Kumbul, Mailil Jae, Sidodadi, and Singga Mata hamlets with low poverty levels. Variations in distance from the cluster center indicate significant differences in the distribution of poverty in each hamlet. The K-Means Clustering method is effective in identifying and grouping hamlets based on poverty levels, providing useful insights for the government and stakeholders to design more targeted intervention programs. Clusters with high poverty levels require immediate intervention, while clusters with medium and low poverty levels require maintenance and support to prevent an increase in poverty. This study provides a strong foundation for decision-making and policies to reduce poverty levels in Bandar Kumbul Village more effectively and sustainably.

Downloads

Download data is not yet available.

References

N. K. Aldawiyah et al., “Analisis Faktor Kemiskinan di Provinsi Sumatera Utara berdasarkan Regresi Komponen Utama,” Var. J. Stat. Its Appl., vol. 6, no. 1, pp. 63–74, 2024, doi: doi.org/10.30598/variancevol6iss1page63-74.

R. H. Sachrrial and A. Iskandar, “Analisa Perbandingan Complate Linkage AHC dan K Medoids Dalam Pengelompokkan Data Kemiskinan di Indonesia,” Build. Informatics, Technol. Sci., vol. 5, no. 2, 2023.

C. Marito et al., “Analisis Tingkat Pengangguran Terbuka, Human Capital dan Jumlah Penduduk Terhadap Kemiskinan di Sumatera Utara,” J. Din. Sos. Budaya, vol. 25, no. 2, pp. 287–300, 2023.

H. Awalia, S. Hamdi, and A. Nasrullah, “Perangkap Kemiskinan pada Perempuan Pesisir Pantai Cemara Kabupaten Lombok Barat,” Sosiol. J. Ilm. Kaji. Ilmu Sos. dan Budaya, vol. 25, no. 2, pp. 128–151, 2023.

M. A. Lasaiba, “Perkotaan dalam Perspektif Kemiskinan, Permukiman Kumuh dan Urban Heat Island (Suatu Telaah Literatur),” Geoforum, vol. 1, no. 2, pp. 63–72, 2022, doi: 10.30598/geoforumvol1iss2pp63-72.

M. Abdul Rahman, N. S. Sani, R. Hamdan, Z. Ali Othman, and A. Abu Bakar, “A clustering approach to identify multidimensional poverty indicators for the bottom 40 percent group,” PLoS One, vol. 16, no. 8, p. e0255312, Aug. 2021, [Online]. Available: https://doi.org/10.1371/journal.pone.0255312

F. I. Raharja and R. Trivinata, “Klaster Wilayah Penanggulangan Kemiskinan di Kabupaten Malang,” J. Ilm. Adm. Publisk, vol. 6, no. 2, pp. 231–240, 2020, doi: 10.21776/ub.jiap.2020.006.02.10.

N. Afira and A. W. Wijayanto, “Analisis Cluster Kemiskinan Provinsi di Indonesia Tahun 2019 dengan Metode Partitioning dan Hierarki,” Komputika J. Sist. Komput., vol. 10, no. 2, pp. 101–109, 2021.

A. Novianti, I. M. Afnan, R. I. B. Utama, and E. Widodo, “Grouping of Districts Based on Poverty Factors in Papua Province Uses The K-Medoids Algorithm,” Enthusiastic Int. J. Appl. Stat. Data Sci., vol. 1, no. 2, pp. 94–102, 2020, doi: 10.20885/enthusiastic.vol1.iss2.art6.

A. Azzahra andA.W.Wijayanto,“Perbandingan Agglomerative Hierarchical dan K-Means Dalam Pengelompokkan Provinsi Berdasarkan Pelayanan Kesehatan Maternal,”Sist.J.Sist.Inf.,vol.11,no.2,pp.481–495, 2022.

F. W. Saputri and D. B. Arianto, “Perbandingan Performa Algoritma K-Means, K- Medoids, dan DBSCAN dalam Penggerombolan Provinsi di Indonesia berdasarkan Indikator Kesejahteraan Masyarakat,” J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 17, no. 2, pp. 138–151, 2023.

W. Andriyani, A. H. Nasyuha, Y. Syahra, and B. Triaji, “Clustering Analysis of Poverty Levels in North Sumatra Province Using the Application of Data Mining with the K-Means Algorithm,” J. Media Inform. Budidarma, vol. 7, no. 4, pp. 1971–1979, 2023, doi: 10.30865/mib.v7i4.6867.

N. Istiqamah, O. Soesanto, and D. Anggraini, “Application of the K-Means algorithm to determine poverty status in Hulu Sungai Tengah,” J. Phys. Conf. Ser., vol. 2106, no. 1, 2021, doi: 10.1088/1742-6596/2106/1/012027.

S. Annas, B. Poerwanto, S. Sapriani, and M. F. S, “Implementation of K-Means Clustering on Poverty Indicators in Indonesia,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 257–266, 2022.

A. A. Arrosyad, A. I. Purnamasari, and I. Ali, “Implementasi Algoritma K-Means Clustering untuk Analisis Persebaran UMKM di Jawa Barat,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3062–3070, 2024.

S. Prakoso, M. Mulyawan, C. Lukman Rohmat, and F. Fathurrohman, “Pengelompokan Wilayah Jawa Barat Berdasarkan Indeks Kedalaman Kemiskinan Dan Jumlah Penduduk Miskin Menggunakan K-Medoids,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2929–2935, 2024, doi: 10.36040/jati.v8i3.9609.

M. A. Hanafiah and A. Wanto, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” Int. J. Inf. Syst. Technol., vol. 3, no. 2, pp. 315–322, 2020.

H. Sibarani, Solikhun, W. Saputra, I. Gunawan, and Z. M. Nasution, “Penerapan Metode K-Means Untuk Pengelompokkan Kabupaten/Kota Di Provinsi Sumatera Utara Berdasarkan Indikator Indeks Pembangunan Manusia,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 154–161, 2022, doi: 10.36040/jati.v6i1.4590.

F. I. Putri, R. Damayanti, and Kismiantini, “Penerapan Algoritma K-Means Untuk Mengelompokan Kecamatan Di Kabupaten Gunungkidul Berdasarkan Program Keluarga Harapan,” Pros. Semin. Nas. Mat. Stat. dan Apl., vol. 2, pp. 408–418, 2022.

D. Istiawan, “Poverty Mapping in Central Java Province Using K-Means Algorithm,” J. Intell. Comput. Heal. Informatics, vol. 1, no. 1, pp. 1–4, 2020, doi: 10.26714/jichi.v1i1.5380.

wikipedia, “Bandar Kumbul, Bilah Barat, Labuhanbatu,” id.wikipedia.org. Accessed: Jun. 20, 2024. [Online]. Available: https://id.wikipedia.org/wiki/Bandar_Kumbul,_Bilah_Barat,_Labuhanbatu

BPS Kabupaten Labuhanbatu, “Kecamatan Bilah Barat Dalam Angka 2023,” Labuhanbatu, 2023. [Online]. Available: https://labuhanbatukab.bps.go.id/publication/download.html.

Published
2024-07-31
How to Cite
Maharani, A., Juni Yanris, G., & Aini Nasution, F. (2024). Implementation of the K-Means Clustering Method in Clustering Poor Population in Bandar Kumbul Village, Labuhanbatu Regency. International Journal of Science, Technology & Management, 5(4), 1015-1023. https://doi.org/10.46729/ijstm.v5i4.1030
Section
Articles