Narrowband IoT in Livestock Farming: A Technological Innovation for Productivity and Sustainability

  • Achmad Sutanto Politeknik Harapan Bersama, Tegal, Indonesia
  • Arif Rakhman Politeknik Harapan Bersama, Tegal, Indonesia
  • Ida Afriliana Politeknik Harapan Bersama, Tegal, Indonesia
  • Rudi Hernowo PT. Anugerah Teknologi Ternak, Semarang Indonesia
  • Wildani Eko Nugroho Politeknik Harapan Bersama, Tegal, Indonesia
  • Mohammad Fayruz STIE Ganesha, Ciputat, Indonesia
Keywords: Narrowband IoT, precision livestock farming, poultry monitoring, environmental management and anomaly detection.

Abstract

The integration of technology in livestock farming is crucial for enhancing production efficiency and animal welfare. This study aimed to develop and evaluate the implementation of a Narrowband IoT (NB-IoT)-based automated monitoring system in poultry farming. Using an experimental design, the research involved 30,000 day-old chicks at PT. Anugerah Teknologi Ternak in Central Java, Indonesia. The NB-IoT system collected real-time data on environmental parameters and poultry activity. Time-series analysis revealed non-stationary data, while correlation analysis showed a strong negative relationship between temperature and humidity (r = -0.8521). Anomaly detection identified 13.33% of observations as anomalous, demonstrating the system's capability for early issue detection. Regression modeling (R-squared = 0.7261) indicated that temperature and humidity significantly influence poultry productivity. The study concludes that NB-IoT implementation in poultry farming has significant potential for enhancing productivity through real-time monitoring and early anomaly detection, supporting more efficient and sustainable precision farming practices. However, limitations in data stationarity and sample generalizability suggest the need for further research to improve long-term predictions and broaden applicability across diverse farming contexts.

Downloads

Download data is not yet available.

References

H. Abdoul Aziz, A. A. Abba Ari, A. Ndam Njoya, A. C. Djedouboum, A. Mohamadou, and O. Thiare, “A collaborative WSN‐IoT‐Animal for large‐scale data collection,” IET Smart Cities, Jul. 2024, doi: 10.1049/smc2.12089.

Z. Shang, Z. Li, Q. Wei, and S. Hao, “Livestock and poultry posture monitoring based on cloud platform and distributed collection system,” Internet of Things, vol. 25, p. 101039, Apr. 2024, doi: 10.1016/j.iot.2023.101039.

L. M. C. Leliveld et al., “Real-time automatic integrated monitoring of barn environment and dairy cattle behaviour: Technical implementation and evaluation on three commercial farms,” Comput. Electron. Agric., vol. 216, p. 108499, Jan. 2024, doi: 10.1016/j.compag.2023.108499.

D. S. Rosero, “Evaluation and Application of Technology in Swine Production Systems,” J. Anim. Sci., vol. 101, no. Supplement_2, pp. 244–245, Oct. 2023, doi: 10.1093/jas/skad341.278.

F. Debruyne et al., “Technical Report: Development and validation of continuous monitoring system for calves based on commercially available sensor for humans,” Comput. Electron. Agric., vol. 219, p. 108765, Apr. 2024, doi: 10.1016/j.compag.2024.108765.

S. Neethirajan, “Automated Tracking Systems for the Assessment of Farmed Poultry,” Animals, vol. 12, no. 3, p. 232, Jan. 2022, doi: 10.3390/ani12030232.

D.-N. Tran, T. N. Nguyen, P. C. P. Khanh, and D.-T. Tran, “An IoT-Based Design Using Accelerometers in Animal Behavior Recognition Systems,” IEEE Sens. J., vol. 22, no. 18, pp. 17515–17528, Sep. 2022, doi: 10.1109/JSEN.2021.3051194.

Y. Zhang, W. Sun, J. Yang, W. Wu, H. Miao, and S. Zhang, “An Approach for Autonomous Feeding Robot Path Planning in Poultry Smart Farm,” Animals, vol. 12, no. 22, p. 3089, Nov. 2022, doi: 10.3390/ani12223089.

L. O. Tedeschi, P. L. Greenwood, and I. Halachmi, “Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming,” J. Anim. Sci., vol. 99, no. 2, Feb. 2021, doi: 10.1093/jas/skab038.

A. Kyoud, C. El Msiyah, and J. Madkour, “Modelling Systemic Risk in Morocco’s Banking System,” Int. J. Financ. Stud., vol. 11, no. 2, p. 70, May 2023, doi: 10.3390/ijfs11020070.

S. Suryavansh, A. Benna, C. Guest, and S. Chaterji, “A data-driven approach to increasing the lifetime of IoT sensor nodes,” Sci. Rep., vol. 11, no. 1, p. 22459, 2021, doi: 10.1038/s41598-021-01431-y.

B. E. Lewis Baida, A. M. Swinbourne, J. Barwick, S. T. Leu, and W. H. E. J. van Wettere, “Technologies for the automated collection of heat stress data in sheep,” Anim. Biotelemetry, vol. 9, no. 1, p. 4, 2021, doi: 10.1186/s40317-020-00225-9.

S. Pandey et al., “Behavioral Monitoring Tool for Pig Farmers: Ear Tag Sensors, Machine Intelligence, and Technology Adoption Roadmap,” Animals, vol. 11, no. 9. 2021, doi: 10.3390/ani11092665.

L. Du et al., “Development and Validation of an Energy Consumption Model for Animal Houses Achieving Precision Livestock Farming,” Animals, vol. 12, no. 19, p. 2580, Sep. 2022, doi: 10.3390/ani12192580.

S. Luo, Y. Ma, F. Jiang, H. Wang, Q. Tong, and L. Wang, “Dead Laying Hens Detection Using TIR-NIR-Depth Images and Deep Learning on a Commercial Farm,” Animals, vol. 13, no. 11, p. 1861, Jun. 2023, doi: 10.3390/ani13111861.

T. T. Van Tran, H. Tayara, and K. T. Chong, “Artificial Intelligence in Drug Metabolism and Excretion Prediction: Recent Advances, Challenges, and Future Perspectives,” Pharmaceutics, vol. 15, no. 4, p. 1260, Apr. 2023, doi: 10.3390/pharmaceutics15041260.

M. Behjati, A. B. Mohd Noh, H. A. H. Alobaidy, M. A. Zulkifley, R. Nordin, and N. F. Abdullah, “LoRa Communications as an Enabler for Internet of Drones towards Large-Scale Livestock Monitoring in Rural Farms,” Sensors, vol. 21, no. 15. 2021, doi: 10.3390/s21155044.

N. N. Misra, Y. Dixit, A. Al-Mallahi, M. S. Bhullar, R. Upadhyay, and A. Martynenko, “IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry,” IEEE Internet Things J., vol. 9, no. 9, pp. 6305–6324, 2022, doi: 10.1109/JIOT.2020.2998584.

C. Aquilani, A. Confessore, R. Bozzi, F. Sirtori, and C. Pugliese, “Review: Precision Livestock Farming technologies in pasture-based livestock systems,” Animal, vol. 16, no. 1, p. 100429, 2022, doi: https://doi.org/10.1016/j.animal.2021.100429.

Published
2024-09-30
How to Cite
Sutanto, A., Rakhman, A., Afriliana, I., Hernowo, R., Eko Nugroho, W., & Fayruz, M. (2024). Narrowband IoT in Livestock Farming: A Technological Innovation for Productivity and Sustainability. International Journal of Science, Technology & Management, 5(5), 1291-1297. https://doi.org/10.46729/ijstm.v5i5.1030