Recommender System for STEM Enrolment in Universities Using Machine Learning Algorithms: Case of Kenyan Universities
Abstract
Technology, Engineering, and Mathematics (STEM) enrolment has gained a lot of research interest. The increase in demand for STEM-based skill sets has contributed to the need for systems that could potentially increase enrolments in the field. The purpose of this study was to investigate recommender systems for STEM enrolment in universities using machine learning algorithms. Students face challenges while selecting STEM courses that match their attributes. This article aims to provide a recommender system for STEM enrolment using machine learning algorithms. The article investigates three machine learning algorithms which include Support Vector Machine (SVM), Artificial Neural Network (ANN), and Naïve Bayes. Accuracy and validation techniques were applied to test the algorithms. The results demonstrated that our work performed better than that of the published research, with the ANN outperforming other classification methods. The results position ANN as an important algorithm in building a recommender model for STEM higher education enrolment. The study also identifies high school grades and Interest in STEM courses as important features in predicting STEM course enrolment in higher education. The study will guide policy on the courses to lay more emphasis on, as well as for the funding authorities to prioritize funding allocation for STEM-based courses.
Downloads
References
S. Kaleva, J. Pursiainen, M. Hakola, J. Rusanen, and H. Muukkonen, “Students’ reasons for STEM choices and
the relationship of mathematics choice to university admission,” Int. J. STEM Educ., vol. 6, no. 1, p. 43, Dec.
, doi: 10.1186/s40594-019-0196-x.
Z. He and W. Jiang, “A new belief Markov chain model and its application in inventory prediction,” Int. J. Prod.
Res., vol. 56, no. 8, pp. 2800–2817, Apr. 2018, doi: 10.1080/00207543.2017.1405166.
J. Sharma and P. K. Yarlagadda, “Perspectives of ‘STEM education and policies’ for the development of a
skilled workforce in Australia and India,” Int. J. Sci. Educ., vol. 40, no. 16, pp. 1999–2022, Nov. 2018, doi:
1080/09500693.2018.1517239.
C. Kroll, A. Warchold, and P. Pradhan, “Sustainable Development Goals (SDGs): Are we successful in turning
trade-offs into synergies?,” Palgrave Commun., vol. 5, no. 1, p. 140, Dec. 2019.
F. Liu, “Addressing STEM in the context of teacher education,” J. Res. Innov. Teach. Learn., vol. 13, no. 1, pp.
–134, Jan. 2020, doi: 10.1108/JRIT-02-2020-0007.
S. Fajrina, L. Lufri, and Y. Ahda, “Science, Technology, Engineering, and Mathematics (STEM) as A Learning
Approach to Improve 21st Century Skills: A Review,” Int. J. Online Biomed. Eng. IJOE, vol. 16, no. 07, p. 95,
Jun. 2020, doi: 10.3991/ijoe.v16i07.14101.
R. L. Tawbush, M. A. Webb, S. D. Stanley, and T. G. Campbell, “International comparison of K-12 STEM
teaching practices,” J. Res. Innov. Teach. Learn., vol. 13, no. 1, pp. 115–128, Jan. 2020, doi: 10.1108/JRIT-01-
-0004.
M. F. Kamaruzaman, R. Hamid, A. A. Mutalib, and M. S. Rasul, “Comparison of Engineering Skills with IR 4.0
Skills,” Int. J. Online Biomed. Eng. IJOE, vol. 15, no. 10, p. 15, Jun. 2019, doi: 10.3991/ijoe.v15i10.10879.
B. Freeman, S. Marginson, and R. Tytler, “An international view of STEM education,” 2019. doi:
1163/9789004405400_019.
D. Ardianto, H. Firman, A. Permanasari, and T. Ramalis, What is Science, Technology, Engineering,
Mathematics (STEM) Literacy? 2019. doi: 10.2991/aes-18.2019.86.
A. Baskota and Y.-K. Ng, “A Graduate School Recommendation System Using the Multi-Class Support Vector
Machine and KNN Approaches,” in 2018 IEEE International Conference on Information Reuse and Integration
(IRI), Salt Lake City, UT: IEEE, Jul. 2018, pp. 277–284. doi: 10.1109/IRI.2018.00050.
H. A. Yazdi, S. J. S. M. Chabok, and M. Kheirabadi, “Dynamic Educational Recommender System Based on
Improved Recurrent Neural Networks Using Attention Technique,” Appl. Artif. Intell., pp. 1–24, Dec. 2021.
D. Roy and M. Dutta, “A systematic review and research perspective on recommender systems,” J. Big Data,
vol. 9, no. 1, p. 59, May 2022, doi: 10.1186/s40537-022-00592-5.
S. Girase, V. Powar, and D. Mukhopadhyay, “A user-friendly college recommending system using user-profiling
and matrix factorization technique,” in 2017 International Conference on Computing, Communication and
Automation (ICCCA), Greater Noida: IEEE, May 2017, pp. 1–5. doi: 10.1109/CCAA.2017.8229779.
K. J. Singh, D. S. Kapoor, and B. S. Sohi, “All about human-robot interaction,” in Cognitive Computing for
Human-Robot Interaction, Elsevier, 2021, pp. 199–229. doi: 10.1016/B978-0-323-85769-7.00010-0.
N. Aishwarya and B. Tiple, “The University Recommendation System for Higher Education,” Int. J. Recent
Technol. Eng., vol. 8, no. 6, pp. 1692–1696, Mar. 2020, doi: 10.35940/ijrte.F7632.038620.
D. Ferreira, S. Silva, A. Abelha, and J. Machado, “Recommendation System Using Autoencoders,” Appl. Sci.,
vol. 10, no. 16, 2020, doi: 10.3390/app10165510.
International Journal of Science, Technology & Management ISSN: 2722 - 4015
Sciforce, “medium.com,” Deep Learning Based Recommender Systems. Accessed: Mar. 14, 2022.
T. N. D. Oliveira, F. Bernardini, and J. Viterbo, “An Overview on the Use of Educational Data Mining for
Constructing Recommendation Systems to Mitigate Retention in Higher Education,” in 2021 IEEE Frontiers in
Education Conference (FIE), Oct. 2021, pp. 1–7. doi: 10.1109/FIE49875.2021.9637207.
Y. Zhang, Y. Yun, R. An, J. Cui, H. Dai, and X. Shang, “Educational Data Mining Techniques for Student
Performance Prediction: Method Review and Comparison Analysis,” Front. Psychol., vol. 12, p. 698490, Dec.
, doi: 10.3389/fpsyg.2021.698490.
Z. Gulzar, A. Leema, and G. Deepak, “PCRS: Personalized Course Recommender System Based on Hybrid
Approach,” Procedia Comput. Sci., vol. 125, pp. 518–524, Jan. 2018, doi: 10.1016/j.procs.2017.12.067.
L. Guo, J. Liang, Y. Zhu, Y. Luo, L. Sun, and X. Zheng, “Collaborative filtering recommendation based on trust
and emotion,” J. Intell. Inf. Syst., vol. 53, no. 1, pp. 113–135, Aug. 2019, doi: 10.1007/s10844-018-0517-4.
V. O. Ezugwu and S. Ologun, “Markov chain: a predictive model for manpower planning,” J. Appl. Sci.
Environ. Manag., vol. 21, no. 3, p. 557, Jul. 2017, doi: 10.4314/jasem.v21i3.17.
A. Polyzou, A. N. Nikolakopoulos, and G. Karypis, Scholars Walk: A Markov Chain Framework for Course
Recommendation. 2019.
K. Kumari and S. Yadav, “Linear regression analysis study,” J. Pract. Cardiovasc. Sci., vol. 4, p. 33, Jan. 2018,
doi: 10.4103/jpcs.jpcs_8_18.
K. B. Sangka and B. Muchsini, “Accommodating Analytic Hierarchy Process (AHP) for Elective Courses
Selection,” IJIE Indones. J. Inform. Educ., vol. 2, no. 2, Dec. 2018, doi: 10.20961/ijie.v2i2.24436.
H. Liang, J. Ren, S. Gao, L. Dong, and Z. Gao, “Chapter 8 - Comparison of Different Multicriteria DecisionMaking Methodologies for Sustainability Decision Making,” in Hydrogen Economy, A. Scipioni, A. Manzardo,
and J. Ren, Eds., Academic Press, 2017, pp. 189–224. doi: 10.1016/B978-0-12-811132-1.00008-0.
M. Ye, “The Datamining Algorithm on Knowledge Dependence,” in 2018 International Conference on Smart
Grid and Electrical Automation (ICSGEA), Changsha: IEEE, Jun. 2018, pp. 234–236. doi:
1109/ICSGEA.2018.00065.
I. E. Guabassi, Z. Bousalem, R. Marah, and A. Qazdar, “A Recommender System for Predicting Students’
Admission to a Graduate Program using Machine Learning Algorithms,” Int. J. Online Biomed. Eng. IJOE, vol.
, no. 02, p. 135, Feb. 2021, doi: 10.3991/ijoe.v17i02.20049.
M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic, “Deep learning
applications and challenges in big data analytics,” J. Big Data, vol. 2, no. 1, p. 1, Dec. 2015, doi:
1186/s40537-014-0007-7.
R. Vargas, A. Mosavi, and R. Ruiz, “DEEP LEARNING: A REVIEW,”Adv.Intell.Syst.Comput.,vol.5, Jun. 2017.
S. Angra and S. Ahuja, “Machine learning and its applications: A review,” in 2017 International Conference on
Big Data Analytics and Computational Intelligence (ICBDAC), Mar. 2017, pp. 57–60.
C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. Mark., vol. 31, no. 3,
pp. 685–695, Sep. 2021, doi: 10.1007/s12525-021-00475-2.
I. E. Guabassi, Z. Bousalem, R. Marah, and A. Qazdar, “Comparative Analysis of Supervised Machine Learning
Algorithms to Build a Predictive Model for Evaluating Students’ Performance,” Int. J. Online Biomed. Eng.
IJOE, vol. 17, no. 02, p. 90, Feb. 2021, doi: 10.3991/ijoe.v17i02.20025.
I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions,” SN Comput.
Sci., vol. 2, no. 3, p. 160, May 2021, doi: 10.1007/s42979-021-00592-x.
R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P. Campbell, “Introduction to Machine
Learning, Neural Networks, and Deep Learning,” Transl. Vis. Sci. Technol., vol. 9, no. 2, pp. 14–14, Feb. 2020,
doi: 10.1167/tvst.9.2.14.
P. Louridas and C. Ebert, “Machine Learning,” IEEE Softw., vol. 33, no. 5, pp. 110–115, Sep. 2016, doi:
1109/MS.2016.114.
P. Ayush, “towardsdatascience.com,” Introduction to Machine Learning for Beginners. [Online]. Available:
https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
X. Wang, “Course-Taking Patterns of Community College Students Beginning in STEM: Using Data Mining
Techniques to Reveal Viable STEM Transfer Pathways,” Res. High. Educ., vol. 57, no. 5, pp. 544–569, Aug.
, doi: 10.1007/s11162-015-9397-4.
T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, and O. Tabona, “A survey on missing data in
machine learning,” J. Big Data, vol. 8, no. 1, p. 140, Oct. 2021, doi: 10.1186/s40537-021-00516-9.
International Journal of Science, Technology & Management ISSN: 2722 - 4015
A. Sithole, E. T. Chiyaka, P. McCarthy, D. M. Mupinga, B. K. Bucklein, and J. Kibirige, “Student Attraction,
Persistence and Retention in STEM Programs: Successes and Continuing Challenges,” High. Educ. Stud., vol. 7,
no. 1, p. 46, Jan. 2017, doi: 10.5539/hes.v7n1p46.
“CUE,” CUE. Accessed: Jul. 16, 2022. [Online]. Available: https://www.cue.or.ke/
M. Mokarrama, S. Khatun, and M. Arefin, “A content-based recommender system for choosing universities,”
Turk. J. Electr. Eng. Comput. Sci., vol. 28, pp. 2128–2142, Jul. 2020, doi: 10.3906/elk-1911-37.
N. C. Siregar and R. Rosli, “The effect of STEM interest base on family background for secondary student,” J.
Phys. Conf. Ser., vol. 1806, no. 1, p. 012217, Mar. 2021, doi: 10.1088/1742-6596/1806/1/012217.
K. Pupara, W. Nuankaew, and P. Nuankaew, “An institution recommender system based on student context and
educational institution in a mobile environment,” in 2016 International Computer Science and Engineering
Conference (ICSEC), Dec. 2016, pp. 1–6. doi: 10.1109/ICSEC.2016.7859877.
C. Fiarni, E. M. Sipayung, and P. B. T. Tumundo, “Academic Decision Support System for Choosing
Information Systems Sub Majors Programs using Decision Tree Algorithm,” J. Inf. Syst. Eng. Bus. Intell., vol.
, no. 1, p. 57, Apr. 2019, doi: 10.20473/jisebi.5.1.57-66.
A. O. Alsayed et al., “Selection of the Right Undergraduate Major by Students Using Supervised Learning
Techniques,” Appl. Sci., vol. 11, no. 22, p. 10639, Nov. 2021, doi: 10.3390/app112210639.
K. K. Jena et al., “E-Learning Course Recommender System Using Collaborative Filtering Models,” Electronics,
vol. 12, no. 1, p. 157, Dec. 2022, doi: 10.3390/electronics12010157.
Y. Zayed, Y. Salman, and A. Hasasneh, “A Recommendation System for Selecting the Appropriate
Undergraduate Program at Higher Education Institutions Using Graduate Student Data,” Appl. Sci., vol. 12, no.
, p. 12525, Dec. 2022, doi: 10.3390/app122412525.
D. A. Pisner and D. M. Schnyer, “Support vector machine,” in Machine Learning, Elsevier, 2020, pp. 101–121.
doi: 10.1016/B978-0-12-815739-8.00006-7.
D. Srivastava and L. Bhambhu, “Data classification using support vector machine,” J. Theor. Appl. Inf.
Technol., vol. 12, pp. 1–7, Feb. 2010.
J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support
vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, pp. 189–215,
Sep. 2020, doi: 10.1016/j.neucom.2019.10.118.
C. A. S. Murty and P. H. Rughani, “Dark Web Text Classification by Learning through SVM Optimization,” J.
Adv. Inf. Technol., vol. 13, no. 6, 2022, doi: 10.12720/jait.13.6.624-631.
F. Ouatik, M. Erritali, F. Ouatik, and M. Jourhmane, “Students’ Orientation Using Machine Learning and Big
Data,” Int. J. Online Biomed. Eng. IJOE, vol. 17, no. 01, p. 111, Jan. 2021, doi: 10.3991/ijoe.v17i01.18037.
B. Gaye, D. Zhang, and A. Wulamu, “Improvement of Support Vector Machine Algorithm in Big Data
Background,” Math. Probl. Eng., vol. 2021, p. 5594899, Jun. 2021, doi: 10.1155/2021/5594899.
J. Cao, M. Wang, Y. Li, and Q. Zhang, “Improved support vector machine classification algorithm based on
adaptive feature weight updating in the Hadoop cluster environment,” PLOS ONE, vol. 14, no. 4, p. e0215136,
Apr. 2019, doi: 10.1371/journal.pone.0215136.
R. Dastres and M. Soori,“Artificial Neural Network Systems,”Int.J.Imaging Robot.,vol. 21,pp.13–25,Mar. 2021.
D.-J. Jwo, A. Biswal, and I. A. Mir, “Artificial Neural Networks for Navigation Systems: A Review of Recent
Research,” Appl. Sci., vol. 13, no. 7, p. 4475, Mar. 2023, doi: 10.3390/app13074475.
A. Farizawani, M. Puteh, Y. Marina, and A. Rivaie, “A review of artificial neural network learning rule based on
multiple variant of conjugate gradient approaches,” J. Phys. Conf. Ser., vol. 1529, no. 2, p. 022040, Apr. 2020,
doi: 10.1088/1742-6596/1529/2/022040.
R. Hernández, M. Musso, E. Kyndt, Eduardo Cascallar, and Carlos Felipe, “Artificial neural networks in
academic performance prediction: Systematic implementation and predictor evaluation,” Comput. Educ. Artif.
Intell., vol. 2, p. 100018, Jan. 2021, doi: 10.1016/j.caeai.2021.100018.
S.-H. Han, K. W. Kim, S. Kim, and Y. C. Youn, “Artificial Neural Network: Understanding the Basic Concepts
without Mathematics,” Dement. Neurocognitive Disord., vol. 17, no. 3, p. 83, 2018, doi:
12779/dnd.2018.17.3.83.
S. N. Latifah, R. Andreswari, and M. A. Hasibuan, “Prediction Analysis of Student Specialization Suitability
using Artificial Neural Network Algorithm,” in 2019 International Conference on Sustainable Engineering and
Creative Computing (ICSECC), Aug. 2019, pp. 355–359. doi: 10.1109/ICSECC.2019.8907173.
S. Gan, S. Shao, L. Chen, L. Yu, and L. Jiang, “Adapting Hidden Naive Bayes for Text Classification,”
Mathematics, vol. 9, no. 19, p. 2378, Sep. 2021, doi: 10.3390/math9192378.
International Journal of Science, Technology & Management ISSN: 2722 - 4015
F.-J. Yang, “An Implementation of Naive Bayes Classifier,” in 2018 International Conference on Computational
Science and Computational Intelligence (CSCI), Las Vegas, NV, USA: IEEE, Dec. 2018, pp. 301–306. doi:
1109/CSCI46756.2018.00065.
R. Muthukrishnan and R. Rohini, “LASSO: A feature selection technique in predictive modeling for machine
learning,” in 2016 IEEE International Conference on Advances in Computer Applications (ICACA), 2016, pp.
–20. doi: 10.1109/ICACA.2016.7887916.
Z. Jun, “The Development and Application of Support Vector Machine,” J. Phys. Conf. Ser., vol. 1748, no. 5, p.
, Jan. 2021, doi: 10.1088/1742-6596/1748/5/052006.
A. Kulkarni, D. Chong, and F. A. Batarseh, “Foundations of data imbalance and solutions for a data democracy,”
in Data Democracy, Elsevier, 2020, pp. 83–106. doi: 10.1016/B978-0-12-818366-3.00005-8.
K. K. Al-jabery, T. Obafemi-Ajayi, G. R. Olbricht, and D. C. Wunsch II, “Data preprocessing,” in
Computational Learning Approaches to Data Analytics in Biomedical Applications, Elsevier, 2020, pp. 7–27.
doi: 10.1016/B978-0-12-814482-4.00002-4.
H. Bon-Gang, “Methodology,” in Performance and Improvement of Green Construction Projects, Elsevier, 2018,
pp. 15–22. doi: 10.1016/B978-0-12-815483-0.00003-X.
Z. Hazari, G. Potvin, J. D. Cribbs, A. Godwin, T. D. Scott, and L. Klotz, “Interest in STEM is contagious for
students in biology, chemistry, and physics classes,” Sci. Adv., vol. 3, no. 8, p. e1700046, Aug. 2017, doi:
1126/sciadv.1700046.
Copyright (c) 2023 International Journal of Science, Technology & Management
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.