Recommender System for STEM Enrolment in Universities Using Machine Learning Algorithms: Case of Kenyan Universities

  • Benard Ondiek School of Technology, KCA University, Nairobi, Kenya
  • Lucy Waruguru School of Technology, KCA University, Nairobi, Kenya
  • Stephen Njenga Department of Computer Science, Murang’a University of Technology, Muranga, Kenya
Keywords: Machine Learning, Higher Education, Support Vector Machine, Engineering and Mathematics

Abstract

Technology, Engineering, and Mathematics (STEM) enrolment has gained a lot of research interest. The increase in demand for STEM-based skill sets has contributed to the need for systems that could potentially increase enrolments in the field. The purpose of this study was to investigate recommender systems for STEM enrolment in universities using machine learning algorithms. Students face challenges while selecting STEM courses that match their attributes. This article aims to provide a recommender system for STEM enrolment using machine learning algorithms. The article investigates three machine learning algorithms which include Support Vector Machine (SVM), Artificial Neural Network (ANN), and Naïve Bayes. Accuracy and validation techniques were applied to test the algorithms. The results demonstrated that our work performed better than that of the published research, with the ANN outperforming other classification methods. The results position ANN as an important algorithm in building a recommender model for STEM higher education enrolment. The study also identifies high school grades and Interest in STEM courses as important features in predicting STEM course enrolment in higher education. The study will guide policy on the courses to lay more emphasis on, as well as for the funding authorities to prioritize funding allocation for STEM-based courses.

Downloads

Download data is not yet available.

References

S. Kaleva, J. Pursiainen, M. Hakola, J. Rusanen, and H. Muukkonen, “Students’ reasons for STEM choices and

the relationship of mathematics choice to university admission,” Int. J. STEM Educ., vol. 6, no. 1, p. 43, Dec.

, doi: 10.1186/s40594-019-0196-x.

Z. He and W. Jiang, “A new belief Markov chain model and its application in inventory prediction,” Int. J. Prod.

Res., vol. 56, no. 8, pp. 2800–2817, Apr. 2018, doi: 10.1080/00207543.2017.1405166.

J. Sharma and P. K. Yarlagadda, “Perspectives of ‘STEM education and policies’ for the development of a

skilled workforce in Australia and India,” Int. J. Sci. Educ., vol. 40, no. 16, pp. 1999–2022, Nov. 2018, doi:

1080/09500693.2018.1517239.

C. Kroll, A. Warchold, and P. Pradhan, “Sustainable Development Goals (SDGs): Are we successful in turning

trade-offs into synergies?,” Palgrave Commun., vol. 5, no. 1, p. 140, Dec. 2019.

F. Liu, “Addressing STEM in the context of teacher education,” J. Res. Innov. Teach. Learn., vol. 13, no. 1, pp.

–134, Jan. 2020, doi: 10.1108/JRIT-02-2020-0007.

S. Fajrina, L. Lufri, and Y. Ahda, “Science, Technology, Engineering, and Mathematics (STEM) as A Learning

Approach to Improve 21st Century Skills: A Review,” Int. J. Online Biomed. Eng. IJOE, vol. 16, no. 07, p. 95,

Jun. 2020, doi: 10.3991/ijoe.v16i07.14101.

R. L. Tawbush, M. A. Webb, S. D. Stanley, and T. G. Campbell, “International comparison of K-12 STEM

teaching practices,” J. Res. Innov. Teach. Learn., vol. 13, no. 1, pp. 115–128, Jan. 2020, doi: 10.1108/JRIT-01-

-0004.

M. F. Kamaruzaman, R. Hamid, A. A. Mutalib, and M. S. Rasul, “Comparison of Engineering Skills with IR 4.0

Skills,” Int. J. Online Biomed. Eng. IJOE, vol. 15, no. 10, p. 15, Jun. 2019, doi: 10.3991/ijoe.v15i10.10879.

B. Freeman, S. Marginson, and R. Tytler, “An international view of STEM education,” 2019. doi:

1163/9789004405400_019.

D. Ardianto, H. Firman, A. Permanasari, and T. Ramalis, What is Science, Technology, Engineering,

Mathematics (STEM) Literacy? 2019. doi: 10.2991/aes-18.2019.86.

A. Baskota and Y.-K. Ng, “A Graduate School Recommendation System Using the Multi-Class Support Vector

Machine and KNN Approaches,” in 2018 IEEE International Conference on Information Reuse and Integration

(IRI), Salt Lake City, UT: IEEE, Jul. 2018, pp. 277–284. doi: 10.1109/IRI.2018.00050.

H. A. Yazdi, S. J. S. M. Chabok, and M. Kheirabadi, “Dynamic Educational Recommender System Based on

Improved Recurrent Neural Networks Using Attention Technique,” Appl. Artif. Intell., pp. 1–24, Dec. 2021.

D. Roy and M. Dutta, “A systematic review and research perspective on recommender systems,” J. Big Data,

vol. 9, no. 1, p. 59, May 2022, doi: 10.1186/s40537-022-00592-5.

S. Girase, V. Powar, and D. Mukhopadhyay, “A user-friendly college recommending system using user-profiling

and matrix factorization technique,” in 2017 International Conference on Computing, Communication and

Automation (ICCCA), Greater Noida: IEEE, May 2017, pp. 1–5. doi: 10.1109/CCAA.2017.8229779.

K. J. Singh, D. S. Kapoor, and B. S. Sohi, “All about human-robot interaction,” in Cognitive Computing for

Human-Robot Interaction, Elsevier, 2021, pp. 199–229. doi: 10.1016/B978-0-323-85769-7.00010-0.

N. Aishwarya and B. Tiple, “The University Recommendation System for Higher Education,” Int. J. Recent

Technol. Eng., vol. 8, no. 6, pp. 1692–1696, Mar. 2020, doi: 10.35940/ijrte.F7632.038620.

D. Ferreira, S. Silva, A. Abelha, and J. Machado, “Recommendation System Using Autoencoders,” Appl. Sci.,

vol. 10, no. 16, 2020, doi: 10.3390/app10165510.

International Journal of Science, Technology & Management ISSN: 2722 - 4015

http://ijstm.inarah.co.id

Sciforce, “medium.com,” Deep Learning Based Recommender Systems. Accessed: Mar. 14, 2022.

T. N. D. Oliveira, F. Bernardini, and J. Viterbo, “An Overview on the Use of Educational Data Mining for

Constructing Recommendation Systems to Mitigate Retention in Higher Education,” in 2021 IEEE Frontiers in

Education Conference (FIE), Oct. 2021, pp. 1–7. doi: 10.1109/FIE49875.2021.9637207.

Y. Zhang, Y. Yun, R. An, J. Cui, H. Dai, and X. Shang, “Educational Data Mining Techniques for Student

Performance Prediction: Method Review and Comparison Analysis,” Front. Psychol., vol. 12, p. 698490, Dec.

, doi: 10.3389/fpsyg.2021.698490.

Z. Gulzar, A. Leema, and G. Deepak, “PCRS: Personalized Course Recommender System Based on Hybrid

Approach,” Procedia Comput. Sci., vol. 125, pp. 518–524, Jan. 2018, doi: 10.1016/j.procs.2017.12.067.

L. Guo, J. Liang, Y. Zhu, Y. Luo, L. Sun, and X. Zheng, “Collaborative filtering recommendation based on trust

and emotion,” J. Intell. Inf. Syst., vol. 53, no. 1, pp. 113–135, Aug. 2019, doi: 10.1007/s10844-018-0517-4.

V. O. Ezugwu and S. Ologun, “Markov chain: a predictive model for manpower planning,” J. Appl. Sci.

Environ. Manag., vol. 21, no. 3, p. 557, Jul. 2017, doi: 10.4314/jasem.v21i3.17.

A. Polyzou, A. N. Nikolakopoulos, and G. Karypis, Scholars Walk: A Markov Chain Framework for Course

Recommendation. 2019.

K. Kumari and S. Yadav, “Linear regression analysis study,” J. Pract. Cardiovasc. Sci., vol. 4, p. 33, Jan. 2018,

doi: 10.4103/jpcs.jpcs_8_18.

K. B. Sangka and B. Muchsini, “Accommodating Analytic Hierarchy Process (AHP) for Elective Courses

Selection,” IJIE Indones. J. Inform. Educ., vol. 2, no. 2, Dec. 2018, doi: 10.20961/ijie.v2i2.24436.

H. Liang, J. Ren, S. Gao, L. Dong, and Z. Gao, “Chapter 8 - Comparison of Different Multicriteria DecisionMaking Methodologies for Sustainability Decision Making,” in Hydrogen Economy, A. Scipioni, A. Manzardo,

and J. Ren, Eds., Academic Press, 2017, pp. 189–224. doi: 10.1016/B978-0-12-811132-1.00008-0.

M. Ye, “The Datamining Algorithm on Knowledge Dependence,” in 2018 International Conference on Smart

Grid and Electrical Automation (ICSGEA), Changsha: IEEE, Jun. 2018, pp. 234–236. doi:

1109/ICSGEA.2018.00065.

I. E. Guabassi, Z. Bousalem, R. Marah, and A. Qazdar, “A Recommender System for Predicting Students’

Admission to a Graduate Program using Machine Learning Algorithms,” Int. J. Online Biomed. Eng. IJOE, vol.

, no. 02, p. 135, Feb. 2021, doi: 10.3991/ijoe.v17i02.20049.

M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic, “Deep learning

applications and challenges in big data analytics,” J. Big Data, vol. 2, no. 1, p. 1, Dec. 2015, doi:

1186/s40537-014-0007-7.

R. Vargas, A. Mosavi, and R. Ruiz, “DEEP LEARNING: A REVIEW,”Adv.Intell.Syst.Comput.,vol.5, Jun. 2017.

S. Angra and S. Ahuja, “Machine learning and its applications: A review,” in 2017 International Conference on

Big Data Analytics and Computational Intelligence (ICBDAC), Mar. 2017, pp. 57–60.

C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. Mark., vol. 31, no. 3,

pp. 685–695, Sep. 2021, doi: 10.1007/s12525-021-00475-2.

I. E. Guabassi, Z. Bousalem, R. Marah, and A. Qazdar, “Comparative Analysis of Supervised Machine Learning

Algorithms to Build a Predictive Model for Evaluating Students’ Performance,” Int. J. Online Biomed. Eng.

IJOE, vol. 17, no. 02, p. 90, Feb. 2021, doi: 10.3991/ijoe.v17i02.20025.

I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions,” SN Comput.

Sci., vol. 2, no. 3, p. 160, May 2021, doi: 10.1007/s42979-021-00592-x.

R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P. Campbell, “Introduction to Machine

Learning, Neural Networks, and Deep Learning,” Transl. Vis. Sci. Technol., vol. 9, no. 2, pp. 14–14, Feb. 2020,

doi: 10.1167/tvst.9.2.14.

P. Louridas and C. Ebert, “Machine Learning,” IEEE Softw., vol. 33, no. 5, pp. 110–115, Sep. 2016, doi:

1109/MS.2016.114.

P. Ayush, “towardsdatascience.com,” Introduction to Machine Learning for Beginners. [Online]. Available:

https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08

X. Wang, “Course-Taking Patterns of Community College Students Beginning in STEM: Using Data Mining

Techniques to Reveal Viable STEM Transfer Pathways,” Res. High. Educ., vol. 57, no. 5, pp. 544–569, Aug.

, doi: 10.1007/s11162-015-9397-4.

T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, and O. Tabona, “A survey on missing data in

machine learning,” J. Big Data, vol. 8, no. 1, p. 140, Oct. 2021, doi: 10.1186/s40537-021-00516-9.

International Journal of Science, Technology & Management ISSN: 2722 - 4015

http://ijstm.inarah.co.id

A. Sithole, E. T. Chiyaka, P. McCarthy, D. M. Mupinga, B. K. Bucklein, and J. Kibirige, “Student Attraction,

Persistence and Retention in STEM Programs: Successes and Continuing Challenges,” High. Educ. Stud., vol. 7,

no. 1, p. 46, Jan. 2017, doi: 10.5539/hes.v7n1p46.

“CUE,” CUE. Accessed: Jul. 16, 2022. [Online]. Available: https://www.cue.or.ke/

M. Mokarrama, S. Khatun, and M. Arefin, “A content-based recommender system for choosing universities,”

Turk. J. Electr. Eng. Comput. Sci., vol. 28, pp. 2128–2142, Jul. 2020, doi: 10.3906/elk-1911-37.

N. C. Siregar and R. Rosli, “The effect of STEM interest base on family background for secondary student,” J.

Phys. Conf. Ser., vol. 1806, no. 1, p. 012217, Mar. 2021, doi: 10.1088/1742-6596/1806/1/012217.

K. Pupara, W. Nuankaew, and P. Nuankaew, “An institution recommender system based on student context and

educational institution in a mobile environment,” in 2016 International Computer Science and Engineering

Conference (ICSEC), Dec. 2016, pp. 1–6. doi: 10.1109/ICSEC.2016.7859877.

C. Fiarni, E. M. Sipayung, and P. B. T. Tumundo, “Academic Decision Support System for Choosing

Information Systems Sub Majors Programs using Decision Tree Algorithm,” J. Inf. Syst. Eng. Bus. Intell., vol.

, no. 1, p. 57, Apr. 2019, doi: 10.20473/jisebi.5.1.57-66.

A. O. Alsayed et al., “Selection of the Right Undergraduate Major by Students Using Supervised Learning

Techniques,” Appl. Sci., vol. 11, no. 22, p. 10639, Nov. 2021, doi: 10.3390/app112210639.

K. K. Jena et al., “E-Learning Course Recommender System Using Collaborative Filtering Models,” Electronics,

vol. 12, no. 1, p. 157, Dec. 2022, doi: 10.3390/electronics12010157.

Y. Zayed, Y. Salman, and A. Hasasneh, “A Recommendation System for Selecting the Appropriate

Undergraduate Program at Higher Education Institutions Using Graduate Student Data,” Appl. Sci., vol. 12, no.

, p. 12525, Dec. 2022, doi: 10.3390/app122412525.

D. A. Pisner and D. M. Schnyer, “Support vector machine,” in Machine Learning, Elsevier, 2020, pp. 101–121.

doi: 10.1016/B978-0-12-815739-8.00006-7.

D. Srivastava and L. Bhambhu, “Data classification using support vector machine,” J. Theor. Appl. Inf.

Technol., vol. 12, pp. 1–7, Feb. 2010.

J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support

vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, pp. 189–215,

Sep. 2020, doi: 10.1016/j.neucom.2019.10.118.

C. A. S. Murty and P. H. Rughani, “Dark Web Text Classification by Learning through SVM Optimization,” J.

Adv. Inf. Technol., vol. 13, no. 6, 2022, doi: 10.12720/jait.13.6.624-631.

F. Ouatik, M. Erritali, F. Ouatik, and M. Jourhmane, “Students’ Orientation Using Machine Learning and Big

Data,” Int. J. Online Biomed. Eng. IJOE, vol. 17, no. 01, p. 111, Jan. 2021, doi: 10.3991/ijoe.v17i01.18037.

B. Gaye, D. Zhang, and A. Wulamu, “Improvement of Support Vector Machine Algorithm in Big Data

Background,” Math. Probl. Eng., vol. 2021, p. 5594899, Jun. 2021, doi: 10.1155/2021/5594899.

J. Cao, M. Wang, Y. Li, and Q. Zhang, “Improved support vector machine classification algorithm based on

adaptive feature weight updating in the Hadoop cluster environment,” PLOS ONE, vol. 14, no. 4, p. e0215136,

Apr. 2019, doi: 10.1371/journal.pone.0215136.

R. Dastres and M. Soori,“Artificial Neural Network Systems,”Int.J.Imaging Robot.,vol. 21,pp.13–25,Mar. 2021.

D.-J. Jwo, A. Biswal, and I. A. Mir, “Artificial Neural Networks for Navigation Systems: A Review of Recent

Research,” Appl. Sci., vol. 13, no. 7, p. 4475, Mar. 2023, doi: 10.3390/app13074475.

A. Farizawani, M. Puteh, Y. Marina, and A. Rivaie, “A review of artificial neural network learning rule based on

multiple variant of conjugate gradient approaches,” J. Phys. Conf. Ser., vol. 1529, no. 2, p. 022040, Apr. 2020,

doi: 10.1088/1742-6596/1529/2/022040.

R. Hernández, M. Musso, E. Kyndt, Eduardo Cascallar, and Carlos Felipe, “Artificial neural networks in

academic performance prediction: Systematic implementation and predictor evaluation,” Comput. Educ. Artif.

Intell., vol. 2, p. 100018, Jan. 2021, doi: 10.1016/j.caeai.2021.100018.

S.-H. Han, K. W. Kim, S. Kim, and Y. C. Youn, “Artificial Neural Network: Understanding the Basic Concepts

without Mathematics,” Dement. Neurocognitive Disord., vol. 17, no. 3, p. 83, 2018, doi:

12779/dnd.2018.17.3.83.

S. N. Latifah, R. Andreswari, and M. A. Hasibuan, “Prediction Analysis of Student Specialization Suitability

using Artificial Neural Network Algorithm,” in 2019 International Conference on Sustainable Engineering and

Creative Computing (ICSECC), Aug. 2019, pp. 355–359. doi: 10.1109/ICSECC.2019.8907173.

S. Gan, S. Shao, L. Chen, L. Yu, and L. Jiang, “Adapting Hidden Naive Bayes for Text Classification,”

Mathematics, vol. 9, no. 19, p. 2378, Sep. 2021, doi: 10.3390/math9192378.

International Journal of Science, Technology & Management ISSN: 2722 - 4015

http://ijstm.inarah.co.id

F.-J. Yang, “An Implementation of Naive Bayes Classifier,” in 2018 International Conference on Computational

Science and Computational Intelligence (CSCI), Las Vegas, NV, USA: IEEE, Dec. 2018, pp. 301–306. doi:

1109/CSCI46756.2018.00065.

R. Muthukrishnan and R. Rohini, “LASSO: A feature selection technique in predictive modeling for machine

learning,” in 2016 IEEE International Conference on Advances in Computer Applications (ICACA), 2016, pp.

–20. doi: 10.1109/ICACA.2016.7887916.

Z. Jun, “The Development and Application of Support Vector Machine,” J. Phys. Conf. Ser., vol. 1748, no. 5, p.

, Jan. 2021, doi: 10.1088/1742-6596/1748/5/052006.

A. Kulkarni, D. Chong, and F. A. Batarseh, “Foundations of data imbalance and solutions for a data democracy,”

in Data Democracy, Elsevier, 2020, pp. 83–106. doi: 10.1016/B978-0-12-818366-3.00005-8.

K. K. Al-jabery, T. Obafemi-Ajayi, G. R. Olbricht, and D. C. Wunsch II, “Data preprocessing,” in

Computational Learning Approaches to Data Analytics in Biomedical Applications, Elsevier, 2020, pp. 7–27.

doi: 10.1016/B978-0-12-814482-4.00002-4.

H. Bon-Gang, “Methodology,” in Performance and Improvement of Green Construction Projects, Elsevier, 2018,

pp. 15–22. doi: 10.1016/B978-0-12-815483-0.00003-X.

Z. Hazari, G. Potvin, J. D. Cribbs, A. Godwin, T. D. Scott, and L. Klotz, “Interest in STEM is contagious for

students in biology, chemistry, and physics classes,” Sci. Adv., vol. 3, no. 8, p. e1700046, Aug. 2017, doi:

1126/sciadv.1700046.

Published
2023-11-29
How to Cite
Ondiek, B., Waruguru, L., & Njenga, S. (2023). Recommender System for STEM Enrolment in Universities Using Machine Learning Algorithms: Case of Kenyan Universities. International Journal of Science, Technology & Management, 4(6), 1465-1476. https://doi.org/10.46729/ijstm.v4i6.1009