K-Means And K-Medoids Algorithms For Food Clusterization Optimized By Nutritional Value

  • Wildani Eko Nugroho D3 Computer Enginering Program Study, Politeknik Harapan Bersama, Tegal, Indonesia
  • Safar Dwi Kurniawan D3 Computer Enginering Program Study, Politeknik Harapan Bersama, Tegal, Indonesia
  • Prayoga Alga Vredison D3 Computer Enginering Program Study, Politeknik Harapan Bersama, Tegal, Indonesia
  • Hasbi Firmansyah Informatika, Universitas Pancasakti, Tegal, Indonesia
Keywords: K-Means; K-Medoids; Nutrition and Clustering.

Abstract

This study examines the impact of flexible work arrangements on productivity in start-up companies located in Bandung Techno Park, using work-life balance as a mediating variable. With a sample size of 168 start-up company members in Bandung Techno Park (BTP), this study uses a probability sampling technique. This study uses quantitative research techniques and structural equal modeling (SEM) based on partial least squares (PLS-SEM) for data analysis. Based on the results of the study, work-life balance and increased productivity are greatly enhanced by flexible work arrangements. The mediating variable of work-life balance acts as a mediator between productivity and flexible work schedules. The findings of this study can be a guide for business management who want to increase the productivity of start-up companies through work arrangement solutions that support work-life balance.

Downloads

Download data is not yet available.

References

A. Pratama, “Noodle Grouping Based On Nutritional Similarity With Hierarchical Cluster Analysis Method,” Anal. Kekuatan Kontruksi Rangka pada Peranc. Belt Conveyor Menggunakan Ansys Work., vol. 2, no. 2, pp. 58–71, 2023.

S. Langyan, P. Yadava, F. N. Khan, Z. A. Dar, R. Singh, and A. Kumar, “Sustaining Protein Nutrition Through Plant-Based Foods,” Front. Nutr., vol. 8, no. January, 2022, doi: 10.3389/fnut.2021.772573.

P. Alga Vredizon, H. Firmansyah, N. Shafira Salsabila, and W. Eko Nugroho, “Penerapan Algoritma K-Means Untuk Mengelompokkan Makanan Berdasarkan Nilai Nutrisi,” J. Technol. Informatics, vol. 5, no. 2, pp. 108–115, 2024, doi: 10.37802/joti.v5i2.577.

S. S. Gropper, “The Role of Nutrition in Chronic Disease,” Nutrients, vol. 15, no. 3, pp. 15–17, 2023, doi: 10.3390/nu15030664.

S. S. Nagari and L. Inayati, “Implementation of Clustering Using K-Means Method To Determine Nutritional Status,” J. Biometrika dan Kependud., vol. 9, no. 1, pp. 62–68, 2020, doi: 10.20473/jbk.v9i1.2020.62-68.

A. Hoerunnisa, G. Dwilestari, F. Dikananda, H. Sunana, and D. Pratama, “Komparasi Algoritma K-Means Dan K-Medoids Dalam Analisis Pengelompokan Daerah Rawan Kriminalitas Di Indonesia,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 103–110, 2024, doi: 10.36040/jati.v8i1.8249.

Irwanto, Y. Purwananto, and R. Soelaiman, “Optimasi Kinerja Algoritma Klasterisasi K-Means,” J. Tek. ITS, vol. 1, no. 1, pp. 197–202, 2012.

M. Orisa, “Optimasi Cluster pada Algoritma K-Means,” Pros. SENIATI, vol. 6, no. 2, pp. 430–437, 2022, doi: 10.36040/seniati.v6i2.5034.

I. W. Septiani, A. C. Fauzan, and M. M. Huda, “Implementasi Algoritma K-Medoids Dengan Evaluasi Davies-Bouldin-Index Untuk Klasterisasi Harapan Hidup Pasca Operasi Pada Pasien Penderita Kanker Paru-Paru,” J. Sist. Komput. dan Inform., vol. 3, no. 4, p. 556, 2022, doi: 10.30865/json.v3i4.4055.

D. Hartama and I. S. Damanik, “Pengelompokan Algoritma K-Means dan K-Medoid Berdasarkan Lokasi Daerah Rawan Bencana di Indonesia dengan Optimasi Elbow , DBI , dan Silhouette,” vol. 6, no. 2, pp. 1151–1158, 2024, doi: 10.47065/bits.v6i2.5851.

E. A. Saputra and Y. Nataliani, “Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means,” J. Inf. Syst. Informatics, vol. 3, no. 3, pp. 424–439, 2021, doi: 10.51519/journalisi.v3i3.164.

B. A. Setiawan and Sulastri, “Perbandingan Clustering Optimalisasi Stok Barang Menggunakan Algoritma K – Means Dan Algoritma K – Medoids,” pp. 978–979, 2021, [Online]. Available: https://unisbank.ac.id/ojs/index.php/sendi_u/article/view/8645

P. Vania and B. Nurina Sari, “Perbandingan Metode Elbow dan Silhouette untuk Penentuan Jumlah Klaster yang Optimal pada Clustering Produksi Padi menggunakan Algoritma K-Means,” J. Ilm. Wahana Pendidik., vol. 9, no. 21, pp. 547–558, 2023, [Online]. Available: https://doi.org/10.5281/zenodo.10081332

N. A. Maori and E. Evanita, “Metode Elbow dalam Optimasi Jumlah Cluster pada K-Means Clustering,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 14, no. 2, pp. 277–288, 2023, doi: 10.24176/simet.v14i2.9630.

F. Irhamni, F. Damayanti, B. Khusnul K, and M. A, “Optimalisasi Pengelompokan Kecamatan Berdasarkan Indikator Pendidikan Menggunakan Metode Clustering dan Davies Bouldin Index,” Semin. Nas. dan Teknol. UMJ, no. 11, pp. 1–5, 2014.

I. T. Umagapi, B. Umaternate, S. Komputer, P. Pasca Sarjana Universitas Handayani, B. Kepegawaian Daerah Kabupaten Pulau Morotai, and B. Riset dan Inovasi, “Uji Kinerja K-Means Clustering Menggunakan Davies-Bouldin Index Pada Pengelompokan Data Prestasi Siswa,” Semin. Nas. Sist. Inf. dan Teknol., vol. 7, no. 1, pp. 303–308, 2023.

I. F. Fauzi, M. Gito Resmi, and T. I. Hermanto, “Penentuan Jumlah Cluster Optimal Menggunakan Davies Bouldin Index pada Algoritma K-Means untuk Menentukan Kelompok Penyakit,” vol. 7, no. 2, pp. 2598–8069, 2023.

A. R. Aruadi, F. Andreas, and B. N. Sari, “Analisis Klaster K-Means pada Data Rata-Rata Konsumsi Kalori dan Protein Menurut Provinsi dengan Metode Davies Bouldin Index,” J. Pendidik. dan Konseling, vol. 4, no. 4, pp. 5652–5661, 2022.

Published
2025-07-27
How to Cite
Eko Nugroho, W., Dwi Kurniawan, S., Alga Vredison, P., & Firmansyah, H. (2025). K-Means And K-Medoids Algorithms For Food Clusterization Optimized By Nutritional Value. International Journal of Science, Technology & Management, 6(4), 808-820. https://doi.org/10.46729/ijstm.v6i4.1327
Section
Articles