Endophytic Bacteria and Fungi from Indonesian Medicinal Plants with Antibacterial, Pathogenic Antifungal and Extracellular Enzymes Activities: A Review
Abstract
The habitat of endophytic bacteria in plant tissues making it automatically used by plants to protect themselves against pathogenic bacteria. Endophytic bacteria have been applied in various fields, including agriculture, pharmacy, medicine, and biotechnology. This review was carried out to summarize recent studies focusing on the diversity of endophytic bacteria derived from traditional medicinal plants which have antibacterial activity and extracellular enzymes. This article was prepared and written by referring to literature studies collected from books and online journal publication. The literature review of endophytic bacteria focused on Vernonia anthelmintic, Saurauia scaberrinae, and Ki rinyuh (Chromolaena odorata) plants. The results revealed that endophytic bacteria obtained from Vernonia anthelmintic plant is from Micrococcus, Bacillus, Pseudomonas, Stenotrophomonas, and Pantoea genus which possess the same biological properties as the host plant, producing antibacterial activity. Saurauia scaberrinae plant successfully isolated endophyte fungus Phoma sp. which produces phomodione (4) and cercosporamide. Phomodione (4) exhibit inhibitory activity against S. aureus, P. ultimum, S. sclerotiorum and R. solani. Cercosporamide exhibits inhibitory activity against S. aureus. Endophytic bacteria were also isolated from Ki rinyuh (Chromolaena odorata), including BECB3, BECB 4, BECA 8, BECA 5, BECA 1, and BECA 10 isolates which have extracellular enzyme activities such as β-amylase, α-amylase, cellulase, chitinase, and protease. Understanding endophytic bacteria in medicinal plants can help researchers apply them effectively.
Downloads
References
Bacon, C.W., White, J.F. (2000). Microbial Endophytes. New York, NY: Marcel Dekker.
Castillo, U.F., Strobel, G.A., Ford, E.J.F. (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148 (Pt 9): 2675-2685.
Berg, G., Hallmann, J. (2006). Control of plant pathogenic fungi with bacterial endophytes. In: Schulz B, Boyle C, Sieber TN, eds. Soil Biology 9: Microbial root endophytes. Berlin, Springer. pp 63 – 67.
Strobel, G., Daisy, B. (2003). Bioprospecting formicrobial endophytes and their natural products, Microbiol. Mol. Biol. Rev. 67: 491-502.
Strobel, G., Daisy, B., Castillo, U., Harper, J. (2004). Natural products from endophytic microorganisms, J. Nat. Prod. 67: 257-268.
Deshmukh, S.K., Gupta, M.K., Prakash, V., Saxena, S. (2018). Endophytic fungi: a source of potential antifungal compounds, Phytochem. Rev. 16: 883-920.
Tan, R.X., Zou, W.X. (2001) Endophytes: a rich source of functional metabolites, Nat. Prod. Rep. 18: 448-459.
Gunatilaka, A.A. (2006). Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence, J. Nat. Prod. 69: 509-526.
Verma, V.C., Kharwar, R.N., Strobel, G.A. (2009). Chemical and functional diversity of natural products from plant associated endophytic fungi, Nat. Prod. Commun. 4: 1511-1532.
Aly, A.H., Debbab, A., Kjer, J., Proksch, P. (2010). Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products, Fungal Divers. 41: 1-16.
Zhang, Y.Y., Han, T., Ming, Q.L., Qin, L.P. (2012). Alkaloids produced by endophytic fungi: a review, Nat. Prod. Commun. 7 (7): 963-968.
Nisa, H., Kamili, A.N., Nawchoo, I.A., Shafi, S., Shameem, N., Bandh, S.A. (2015). Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review, Microb. Pathog. 82: 50-59.
Sudha, V., Govindaraj, R., Baskar, K., Al-Dhabi, N.A., Duraipandiyan, V. (2016). Biological properties of endophytic fungi, Braz. Arch. Biol. Technol. 59: 1-7.
Köberl, M., Cardinale, M., Berg, G., Ramadan, E.M., Heuer, H., Hallmann, J., Smalla, K., Adam, M. (2013). Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol Lett 342:168-178..
Egamberdieva, D., Wirth, S., Li,L., Abd-Allah, E.F., Lindström, K. (2017). Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered 8:433-438.
Yehia, R.S., Osman, G.H., Assaggaf, H., Salem, R., Mohamed, M.S.M. (2020). Isolation of potential antimicrobial metabolites from endophytic fungus Cladosporium cladosporioides from endemic plant Zygophyllum mandavillei. South African Journal of Botany 134: 296-302..
Yasuhiro, I., Shin-Suke, M., Tsuyoshi, F., Tamotsu, F. (2010). Pterocidin, a cytotoxic compound from the endophytic Streptomyces hygroscopicus. J Antibiot 59:193-195.
Hasegawa, T., Takizawa, M., Tanida, S. (1983). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319-322.
Kharwar, R.N., Verma, V.C., Kumar, A., Gond, S.K., Harper, J.K., Hes, W.M., Lobkovosky, E., Cong, M., Ren, Y., Strobel, G.A. (2009). Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233-238.
Mamangkey, J., Suryanto, D., Munir, E., Lutfia, A., Hartanto, A., Huda, M.K. (2019). First Report of Plant Growth Promoting Endophytic Bacteria from Medicinal Invasive Plants (Chromolaena odorata). IOP Conf. Series: Earth and Environmental Science 305: 012091..
Castronovo, L.M., Vassallo. A., Mengoni, A., Miceli, E., Bogani, P., Firenzuoli, F., Fani, R., Maggini, V. (2021). Medicinal Plants and Their Bacterial Microbiota: A Review on Antimicrobial Compounds Production for Plant and Human Health. Pathogens, 10: 106.
Nxumalo, C.I., Ngidi, L.S., Shandu, J.S.E., Maliehe, T.S. (2020). Isolation of endophytic bacteria from the leaves of Anredera cordifolia CIX1 for metabolites and their biological activities. BMC Complementary Medicine and Therapies 20:300.
Cardoso, F.M., Campos, F.F., Santos, A.R.O., Ottoni, M.H.F., Rosa, C.A., Almeida, F.G., Grael, C.F.F. (2020). Biotechnological applications of the medicinal plant Pseudobrickellia brasiliensis and its isolated endophytic bacteria. 129 (4): 926-934.
Yousef, N., Mawad, A., Abeed, A. (2019). Enhancement the Cellulase Activity Induced by Endophytic Bacteria Using Calcium Nanoparticles. Curr. Microbiol. 76, 346-354.
Hua, L., Qi, W.Y., Hussain, S.H., Gao, K., Arfan, M. (2012). Highly oxygenated stigmastane-type steroids from the aerial parts of Vernonia anthelmintica Willd. Steroids 77:811–818.
Ito, T., Aimaiti, S., Win, N.N., Kodama, T., Morita, H. (2016). New sesquiterpene lactones, vernonilides A and B, from the seeds of Vernonia anthelmintica in Uyghur and their antiproliferative activities. Bioorg Med Chem Lett 26:3608–3611.
Yousef, N., Mawad, A., Abeed, A. (2019). Enhancement the Cellulase Activity Induced by Endophytic Bacteria Using Calcium Nanoparticles. Curr. Microbiol. 76, 346-354.
Yousef, N., Mawad, A., Abeed, A. (2019). Enhancement the Cellulase Activity Induced by Endophytic Bacteria Using Calcium Nanoparticles. Curr. Microbiol. 76, 346-354.
Hua, L., Qi, W.Y., Hussain, S.H., Gao, K., Arfan, M. (2012). Highly oxygenated stigmastane-type steroids from the aerial parts of Vernonia anthelmintica Willd. Steroids 77:811–818.
Ito, T., Aimaiti, S., Win, N.N., Kodama, T., Morita, H. (2016). New sesquiterpene lactones, vernonilides A and B, from the seeds of Vernonia anthelmintica in Uyghur and their antiproliferative activities. Bioorg Med Chem Lett 26:3608–3611.
Yousef, N., Mawad, A., Abeed, A. (2019). Enhancement the Cellulase Activity Induced by Endophytic Bacteria Using Calcium Nanoparticles. Curr. Microbiol. 76, 346-354.
Yousef, N., Mawad, A., Abeed, A. (2019). Enhancement the Cellulase Activity Induced by Endophytic Bacteria Using Calcium Nanoparticles. Curr. Microbiol. 76, 346-354.
Hua, L., Qi, W.Y., Hussain, S.H., Gao, K., Arfan, M. (2012). Highly oxygenated stigmastane-type steroids from the aerial parts of Vernonia anthelmintica Willd. Steroids 77:811–818.
Ito, T., Aimaiti, S., Win, N.N., Kodama, T., Morita, H. (2016). New sesquiterpene lactones, vernonilides A and B, from the seeds of Vernonia anthelmintica in Uyghur and their antiproliferative activities. Bioorg Med Chem Lett 26:3608–3611.
Jahan, N., Ahmad, M., Ziaulhaq, M., Alam, S.M., Qureshi, M. (2010). Antimicrobial screening of some medicinal plants of Pakistan. Pak J Bot 42: 4281-4284.
Fatima, S.S., Rajasekhar, M.D., Kumar, K.V., Kumar, M.T.S., Babu, K.R., Rao, C.A. (2010). Antidiabetic and antihyperlipidemic activity of ethyl acetate:isopropanol (1:1) fraction of Vernonia anthelmintica seeds in streptozotocin induced diabetic rats. Food Chem Toxicol 48:495-501.
Pasaribu, G., Budianto, E., Cahyana, H., Saepudin, E. (2020). A Review on Genus Saurauia: Chemical Compounds and their Biological Activity. Pharmacogn J. 12(3): 657-666.
Silalahi, M., Supriatna, J., Walujo, E.K.O.B. (2015). Local knowledge of medicinal plants in sub-ethnic Batak Simalungun of North Sumatra , Indonesia. Biodiversitas 16, 44-54.
Lentz, D.L., Clark, A.M., Hufford, C.D., Meurer-Grimes, B., Passreiter, C.M., Cordero, J., Ibrahimi, O., Okunade, A.L. (1998). Antimicrobial properties of Honduran medicinal plants. J. Ethnopharmacol. 63, 253-263.
Yenti, R., Afrianti, R., Afriani, L. (2011). Formulasi krim ekstrak etanol daun kirinyuh (Euphatorium odoratum L.) untuk penyembuhan luka. Majalah Kesehatan PharmaMedika, 3(1), 227-230.
Srivastava, R., Verma, A., Mukerjee, A., Soni, N. (2014). Phytochemical, Pharmacological and pharmacognostical profile of Vernonia anthelmintica: an overview. Res Rev J Pharmacogn Phytochem 2:22-28.
Dhiman, A.K. (2004). Banaras Ayurveda Series 2: Medicinal Plants of Uttaranchal State. Chowkhamba Sanskrit Series Office, Varanasi.
Kirtikar, K.R., Basu, B.D. (1935). Indian Medicinal Plants, Vol. II. Lalit Mohan Publication, Allahabad, 1347-1348.
Dogra, N.K., Kumar, S., Kumar, D. (2020). Vernonia anthelmintica (L.) Willd.: An ethnomedicinal, phytochemical, pharmacological and toxicological review. J Ethnopharmacol. 28 (256):112777.
Amir, F., Chin, K.Y. (2011). The chemical constituents and pharmacology of Centratherum anthelminticum. Int. J. PharmTech Res. 3: 1772-1779.
Ocvirk, S., Kistler, M., Khan, S., Talukder, S.H., Hauner, H. (2013). Traditional medicinal plants used for the treatment of diabetes in rural and urban areas of Dhaka, Bangladesh- an ethnobotanical survey. J. Ethnobiol. Ethnomed. 9, 43.
Rustamova, N., Wubulikasimu, A., Mukhamedo, V.N., Gao, Y., Yili, D.E.A. (2020). Endophytic Bacteria Associated with Medicinal Plant Vernonia anthelmintica: Diversity and Characterization. Curr Microbiol. 77(8):1457-1465.
Emiliani, G., Mengoni, A., Maida, I., Perrin, E., Chiellini, C., Fondi, M., Gallo, E., Gori, L., Maggini, V., Vannacci, A. (2014). Linking bacterial endophytic communities to essential oils: clues from Lavandula angustifolia Mill. Evid Based Complement Alternat Med, 650905.
Janardhan, B.S., Vijayan, K. (2012). Types of endophytic bacteria associated with traditional medicinal plant Lantana camara Linn. Pharmacogn J. 4:20-23.
Mehanni, M.M., Safwat, M.S.A., Tantawy, A., Moaty, E.A. (2010). Endophytes of medicinal plants. Acta Hortic 854:31-39.
Akinsanya, M.A., Goh, J.K., Lim, S.P., Ting, A.S.Y. (2015). Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genom Data 6:159-163.
Egamberdieva, D., Jabborova, D., Berg, G. (2016). Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405:35-45.
Berg, G., Grube, M., Schloter, M., Smalla, K. (2014). Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148
Hoffman, A.M., Mayer, S.G., Strobel, G.A., Hess, W.M., Sovocool, G.W., Grange, A.H., Harper, J.K., Arif, A.M., Grant, D.M., Kelley-Swift, E.G. (2008). Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry, 69: 1049-1056.
Kim, J.W., Choi, H.G., Song, J.H., Kang, K.S., Shim, S.H. (2018). Bioactive secondary metabolites from an endophytic fungus Phoma sp. PF2 derived from Artemisia princeps Pamp, J Antibiot. 72(3):174-177.
da Silva G.B.P.G., Silvino, K.F., Bezerra, J., Farias, T. (2017). Antimicrobial activity of Phoma sp. URM 7221: An endophyte from Schinus terebinthifolius Raddi (Anacardiaceae). African Journal of Microbiology Research 11(1):1-7.
Liu, Z., Chen, Y., Lian, B., Zhang, Z., Zhao, Y., Ji, Z., Lv, Y., Li, H. (2019). Comparative Study on Population Ecological Distribution and Extracellular Enzyme Activities of Endophytic Fungi in Artemisia annua. Journal of Biosciences and Medicines, 7: 94-105.
Buzugbe, H.S., Eze, P.M., Chukwunwe, Jim, C.R., Nwachukwu, C.U., Abonyi, D.O., Abba, C.C., Okoye, F.B.C., Esimone, C.O. (2018). Investigation of secondary metabolites of an endophytic fungus isolated from the leaves of Chromolaena odorata for possible antimicrobial and antioxidant Activities. Pharm Chem J. 5(6):72-77.
Gultom, E.S., Sakinah, M., Hasanah, U. (2020). Eksplorasi Senyawa Metabolit Sekunder Daun Kirinyuh (Chromolaena odorata) dengan GC-MS. Jurnal Biosains 6(1): 23-26.
Hoffman, A.M., Mayer, S.G., Strobel, G.A., Hess, W.M., Sovocool, G.W., Grange, A.H., Harper, J.K., Arif, A.M., Grant, D.M., Kelley-Swift, E.G. (2008). Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry, 69: 1049-1056.