Effect Of Overbrengeun Delay From CY To CFS Warehouse On Stripping Implementation At PT. Internusa Hasta Buana

Otri Wani Sibaloho
Diploma IV, STIP Jakarta, Indonesia
*Corresponding Author:
Email: otriwalioh@gmail.com

Abstract
In goods import activities at PT. Internusa Hasta Buana, overloads from the Container Yard (CY) to the CFS Warehouse. Delays in ships and Delivery Order documents are factors that cause overbrengeun delays and will affect productivity at PT. Internusa Hasta Buana. The aim of this research is to analyze the effect of overbrengeun delays on stripping productivity at PT. Internusa Hasta Buana. Data collection techniques using observation and interviews. The population of this research is container handling activities at PT. Internusa Hasta Buana with samples namely Overbrengeun and Stripping Activities which experienced delays at PT. Internusa Hasta Buana, Jakarta, in 2007. The method used is quantitative description. The results of the research show the results of the analysis regarding the relationship between late Overbrengeun and Stripping at PT. Internusa Hasta Buana using correlation analysis shows a value of $r = 0.83$. This proves that the influence of Overbrengeun delay on Stripping has a strong and positive relationship on the productivity of PT's Stripping implementation Internusa Hasta Buana, the results of hypothesis testing with an error rate of 5% on all sample data, obtained the number $t = 4.36$ r table $= 1.182$ so that $H_0: r = 0$ rejected and $H_1: r > 0$ is accepted, meaning there is a significant relationship between Delay Overbrengeun and implementation of Stripping at PT CFS Warehouse Internusa Hasta Buana and the results of the analysis of the influence of Overbrengeun delays on the implementation of Stripping using coefficient analysis obtained the regression equation model $Y = 215 + 1.01x$, which means that if the variable for Overbrengeun experiences a delay of x increases by 1.01 times then the variable for the number of containers which in Overbrengeun and Stripping will increase by 1.01 times. The results of the determining coefficient obtained were 68%, meaning that the influence of late Overbrengeun on the implementation of Stripping at the CFS Warehouse of PT. Internusa Hasta Buana was 68% and the remaining 32% was due to other factors being ignored, as well as delays in Overbrengeun to PT's CFS warehouse Internusa Hasta Buana is caused by several factors including: delays in Delivery Order documents from shipping companies.

Keywords: Overbrengeun, Delay and Stripping Productivity.

I. INTRODUCTION
Transportation is an important means of supporting the economic life of a country. Apart from that, transportation is also important for export and import activities (Banta, C & Fadhil, 2018). Export-import activities of goods aim to meet needs between countries, and also increase the country's foreign exchange (Parba, 2020). Therefore, export-import activities of goods play a very important role in supporting a country's economy (Oleszkowicz Szlampa et al., 2019). The role and activities of Freight Forwarding companies in the Republic of Indonesia Government Regulation No. 8 of 2011 concerning Multimodal Transport is very important because it makes it easier for exporters and importers to provide export-import management services (Rusina et al., 2022). For this reason, there is a need for understanding and knowledge from the general public and related parties regarding this service, especially in shipping goods by sea. So, by utilizing information systems and technology, it is hoped that the function and responsibility of expeditions services will be an economic means of realizing an efficient, precise and safe delivery and management system for goods. As time progressed, companies were formed that were engaged in managing export-import activities, one of the companies in question was a shipping company, PT. Internusa Hasta Buana is a goods delivery and supervision company which operates in the Freight Forwarding sector, namely a company designated as "Transportation Management Services" or in other words "An Intermediary/Liaison between Shipper and Consignee".

In the import-export activities carried out by PT. Internusa Hasta Buana, it always collaborates with other parties including shippers and consignees. Import procedures in principle, the process of importing goods from abroad to Indonesia is the same as exporting, namely that you must have permits to import goods from the Ministry of Trade and Government Agencies that will issue the permits (Sarumaha et al., 2022). The import procedure is the preparation of import documents and their completion (Gani, 2017). Several
documents for importing goods from abroad must be prepared in advance. The documents required are: a trade contract between a domestic importer (buyer) and a seller (supplier) abroad, which is signed by both parties. Re-examination by customs officers regarding filling and calculating customs fees on the PIB attached with other documents including proof of payment of taxes/ import duties (Triyulianto et al., 2019).

If everything is in accordance with the applicable provisions, the customs official will give approval for the release of goods (Exit Fiat), which is written on the original D/O and PIB without having to physically inspect the goods in question. After preparing the import documents and the settlement process, the freight forwarder then carries out the process of releasing the imported goods, namely: after receiving the ‘Outgoing Fiat’ written on the D/O and PIB, the Forwarder will carry out the carrier’s request to remove the goods from the goods accumulation place (Warehouse or Container Yard) (Sajudi & Muhammad Rangga Tony Alamsyah, 2018). The carrier will check all related documents, especially the D/O and PIB which concerns the payment of related costs and exit fiat from Customs and Excise (Winarto, 2013). If everything has been carried out in accordance with the applicable provisions, the carrier will issue a ‘Travel Letter’ along with a copy of the D/O and PIB for interested officers, so that the imported goods can be removed from the warehouse to be handed over to the owner (Kayikci, 2018). In goods import activities, PT. Internusa Hasta Buana carries out unloading from the Container Yard (CY) to the CFS Warehouse. Delays in shipping and Delivery Order documents are factors that cause overbregen delays and will affect stripping productivity at PT Internusa Hasta Buana.

II. METHODS

The research approach used in this research is quantitative research. This research aims to obtain empirical evidence and develop a theory (prediction orientation) of the influence of Overbregen delays from CY to the CFS warehouse on the implementation of unloading goods from containers (stripping) at PT Internusa Hasta Buana. Seeing the problems and research objectives to be achieved, this research uses an explanatory type of research with a survey approach. Explanatory research is research that aims to examine causality between variables that explain certain phenomena (Haryanti, 2019). The main reason this research was done is to see the problems and research objectives to be achieved, this research uses an explanatory type of research with a survey approach. Explanatory research is research that aims to examine causality between variables that explain certain phenomena (Haryanti, 2019). The main reason this researcher uses this type of explanatory research is to test the proposed hypothesis, so it is hoped that this research can explain the relationship and influence between the independent and dependent variables in the hypothesis. The data collection technique is by obtaining data in an actual situation or directly from the object under study where the source can be trusted to be true (Creswell, 2018).

The collection technique used is 1) Observation, the author made objective observations by making direct observations from the field where the Overbregen and Stripping activities were carried out. This technique is carried out to obtain a general overview of the process of Overbregen and Stripping activities that occur so that you can directly observe the process of Overbregen and Stripping activities in accordance with the actual situation and conditions. 2) Interviews are a method used to obtain data or information directly by asking questions to employees or parties in their field to obtain the necessary data. 3) Literature study is a data collection method that will be carried out in the library by reading. The population in this research is container handling activities at PT Internusa Hasta Buana. The samples taken were Overbregen and Stripping activities which experienced delays at PT Internusa Hasta Buana Jakarta in 2007. The data analysis used uses a quantitative description method where the author tries to provide an overview of the obstacles faced by PT Internusa Hasta Buana Jakarta. Quantitative statistical analysis techniques are Simple Linear Regression Analysis and Correlation Coefficient Analysis.

III. RESULTS AND DISCUSSION

In the analysis as supporting data that can show the influence caused by Overbregen delays on the productivity of the Stripping process in PT’s CFS Warehouse, Internusa Hasta Buana, the author presents the number of containers per month and containers experiencing delays in O/B and Stripping at PT Internusa Hasta Buana Jakarta in 2007. The data below represents Overbregen and Stripping activities that experienced delays at PT Internusa Hasta Buana in 2007.
Table 1. Number of containers Overloaded & Stripped by PT. Internusa Hasta Buana 2007 Period

<table>
<thead>
<tr>
<th>Month</th>
<th>Containers experiencing Overbringing & Stripping delays (X)</th>
<th>Number of containers/month (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>February</td>
<td>17</td>
<td>29</td>
</tr>
<tr>
<td>March</td>
<td>30</td>
<td>44</td>
</tr>
<tr>
<td>April</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>May</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>June</td>
<td>26</td>
<td>33</td>
</tr>
<tr>
<td>July</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>August</td>
<td>21</td>
<td>33</td>
</tr>
<tr>
<td>September</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td>October</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>November</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>December</td>
<td>25</td>
<td>31</td>
</tr>
</tbody>
</table>

Data Source: PT. Internusa Hasta Buana, 2023

So, the average number of containers experiencing delays in Overbringing and Stripping in PT’s CFS Warehouse, Internusa Hasta Buana in a 1 year period is 24 (twenty four) containers so that every month PT. Internusa Hasta Buana experiences an average Overbringing delay of 24 containers with a total of 34 containers/month. For greater clarity, the author describes it in graphical form.

Fig. 1. Bar Diagram of Overloaded and Stripped Containers for the 2004-2006 Period PT. Internusa Hasta Buana

Data Source: PT. Internusa Hasta Buana, 2023

To find out the relationship between Overbringing delays and the implementation of Stripping at the PT CFS Warehouse, Internusa Hasta Buana can then be tested using correlation coefficient analysis, determining coefficient analysis, simple linear regression and hypothesis testing.

Table 2. X and Y Variable Relationship Worksheet

<table>
<thead>
<tr>
<th>No</th>
<th>Month</th>
<th>X</th>
<th>Y</th>
<th>X²</th>
<th>Y²</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>January</td>
<td>22</td>
<td>28</td>
<td>484</td>
<td>784</td>
<td>616</td>
</tr>
<tr>
<td>2</td>
<td>February</td>
<td>29</td>
<td>29</td>
<td>841</td>
<td>841</td>
<td>493</td>
</tr>
<tr>
<td>3</td>
<td>March</td>
<td>44</td>
<td>900</td>
<td>1936</td>
<td>1936</td>
<td>1620</td>
</tr>
<tr>
<td>4</td>
<td>April</td>
<td>34</td>
<td>676</td>
<td>1156</td>
<td>1156</td>
<td>884</td>
</tr>
<tr>
<td>5</td>
<td>May</td>
<td>36</td>
<td>784</td>
<td>1296</td>
<td>1296</td>
<td>1003</td>
</tr>
<tr>
<td>6</td>
<td>June</td>
<td>33</td>
<td>676</td>
<td>1089</td>
<td>1089</td>
<td>858</td>
</tr>
<tr>
<td>7</td>
<td>July</td>
<td>34</td>
<td>576</td>
<td>1156</td>
<td>1156</td>
<td>816</td>
</tr>
<tr>
<td>8</td>
<td>August</td>
<td>33</td>
<td>441</td>
<td>1089</td>
<td>1089</td>
<td>693</td>
</tr>
<tr>
<td>9</td>
<td>September</td>
<td>31</td>
<td>400</td>
<td>961</td>
<td>961</td>
<td>620</td>
</tr>
<tr>
<td>10</td>
<td>October</td>
<td>30</td>
<td>529</td>
<td>900</td>
<td>900</td>
<td>690</td>
</tr>
<tr>
<td>11</td>
<td>November</td>
<td>42</td>
<td>900</td>
<td>1764</td>
<td>1764</td>
<td>1260</td>
</tr>
<tr>
<td>12</td>
<td>December</td>
<td>31</td>
<td>625</td>
<td>961</td>
<td>961</td>
<td>775</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>292</td>
<td>405</td>
<td>7280</td>
<td>139333</td>
<td>10053</td>
</tr>
<tr>
<td>Flat</td>
<td></td>
<td>24</td>
<td>33.75</td>
<td>243333</td>
<td>33.75</td>
<td>34</td>
</tr>
</tbody>
</table>

Source: PT. Internusa Hasta Buana

http://qast.unsahidi.co.id
Table IV.2 Has been processed by the author

Variable X = Number of containers experiencing delays in Overbringing and Stripping
Variable Y = Number of containers that are Overloaded and Stripped at PT CFS Warehouse. Internusa Hasta Buana in 2007.

From the results of the data above, the author got the following figures:
1. Correlation Coefficient Analysis

To determine the strength and weakness of the relationship between 2 (two) variables, namely variable X and variable Y, with this analysis the value of r (correlation coefficient) will be known, namely with the formula:

\[
\hat{r} = \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{n(\sum X^2) - (\sum X)^2} \cdot \sqrt{n(\sum Y^2) - (\sum Y)^2}}
\]

\[
\hat{r} = \frac{12(10,033) - (292)(405)}{\sqrt{12(7,280) - (292)^2} \cdot \sqrt{12(13,933) - (405)^2}}
\]

\[
\hat{r} = \frac{120,396 - 118,260}{\sqrt{87,360 - 85,264} \cdot \sqrt{167,196 - 164,025}}
\]

\[
\hat{r} = \frac{2,136}{\sqrt{2,096} \cdot \sqrt{3171}}
\]

\[
\hat{r} = \frac{2,136}{\sqrt{6,931}}
\]

\[
\hat{r} = 2,572.9
\]

\[
\hat{r} = 0.83
\]

From the calculation results above, it can be seen that the r (correlation) value is 0.83, meaning that variables X and Y have a strong positive relationship. This relationship or correlation can be described schematically as follows:

![Image 1: Constellation of variables](http://jerm.inarah.co.id)

Fig 1. Constellation of variables

![Image 2: Simple Linear Regression Analysis](http://jerm.inarah.co.id)

Fig 2. About Simple Linear Regression Analysis

From the simple linear regression image model, \(Y = 9.17 + 1.01X \), it can be predicted for January 2007 if \(Y \) (the number of containers overloaded and stripped) = 11 with the following calculation:

\[
Y = 9.17 + 1.01(11)
\]

\[
Y = 9.17 + 11.11
\]

\[
Y = 20.28
\]

http://jerm.inarah.co.id
From these results it can be predicted that in January 2007 the number of containers experiencing delays in Overbrengen and Stripping was 11 containers out of 20 containers that were Overbrengen and Stripping. It can be seen from the simple correlation, determinant, linear coefficient calculations that hypothesis testing can be carried out to determine the effect of Overbrengen delays on the implementation of Stripping in PT’s CFS Warehouse. Internusa Hasta Buana.

2. Determinant Coefficient Analysis \(r^2 \times 100\% \)
\[
= (0.83)^2 \times 100\% \\
= 0.68 \times 100\% \\
= 68\%
\]

This means that the influence of Overbrengen delays on the implementation of Stripping is 68% and the remaining 32% is influenced by other factors.

3. Hypothesis testing

It can be seen from the simple correlation, determinant, linear coefficient calculations that hypothesis testing can be carried out to determine the effect of Overbrengen delays on the implementation of Stripping in PT’s CFS Warehouse. Internusa Hasta Buana.

Hypothesis testing carried out by the author is as follows:

1. \(H_0: r = 0 \) means there is no influence between the delay in Overbrengen and the implementation of Stripping at the CFS Warehouse of PT Internusa Hasta Buana.

2. \(H_1: r \neq 0 \) means there is an influence between the Overbrengen delay and the implementation of Stripping at the CFS Warehouse of PT Internusa Hasta Buana.

If the confidence level is 5% or \(\alpha = 0.05 \), \(\text{df} = n - 2 \)
\[
\alpha (n - 2) = 0.05 (12 - 2) = 0.05 (10) = 1.812 \text{ (from t table)}
\]
\[
t_0 = \frac{r \sqrt{n - 2}}{\sqrt{1 - r^2}}
\]
\[
t_0 = \frac{0.83 \sqrt{12 - 2}}{\sqrt{1 - (0.83)^2}}
\]
\[
t_0 = \frac{0.83 \sqrt{10}}{\sqrt{1 - 0.68}}
\]
\[
t_0 = \frac{0.83 \times 3.16}{\sqrt{0.32}}
\]
\[
t_0 = 2.6228
\]
\[
t_0 = 0.5656
\]
\[
t_0 = 4.63
\]

From the results of the research analysis above, \(t_0 = 4.63 > t \text{ table} = 1.812 \), then \(H_0 \) is rejected and \(H_1 \) is accepted and based on the test above, it shows that there is an influence between Overbrengen delays on the implementation of Strapping in PT’s CFS Warehouse. Internusa Hasta Buana.

Hypothesis testing carried out by the author is as follows:

\(H_0: r = 0 \) means there is no influence between the delay in Overbrengen and the implementation of Strapping at the CFS Warehouse of PT Internusa Hasta Buana.

\(H_1: r \neq 0 \) means there is an influence between the Overbrengen delay and the implementation of Strapping at the CFS Warehouse of PT Internusa Hasta Buana.

If the confidence level is 5% or \(\alpha = 0.05 \), \(\text{df} = n - 2 \)
\[
\alpha (n - 2) = 0.05 (12 - 2) = 0.05 (10) = 1.812 \text{ (from t table)}
\]
Alternative Troubleshooting

Alternative problem solving includes:

1. Create a job description
 Job description is a clear division of duties and responsibilities between one employee and another. This is an important factor because without a job description employees do not have clear duties and responsibilities.

2. There is a good cooperative relationship with Government Agencies
 Good relationships with government agencies really support the process of collecting managing documents needed for Overbrenjen.

3. Good communication with shipping companies
 Communication with shipping companies is very important. Because if we lack communication with the shipping company, we will be late in finding out information about the ship's arrival and taking the Delivery Order to the shipping company.

4. Professional workforce/employees
 In each Overbrenjen activity process, professional and reliable workers need to be prepared to handle the Overbrenjen process so that it can be completed quickly and on time by taking into account the time specified in the company's Quality Objective (QO).

Problem Solving Evaluation

Evaluation of the problem from alternative problem solving is:

1. Create a job description
 This method is the most important method because if there is no division of tasks and responsibilities there will be inequality in work and in the end it will indirectly affect the performance of the company itself.

2. There is a good cooperative relationship with Government Agencies
 If our relationship is not good with government agencies then that could also be a factor hindering the stripping process. Because some of the documents we need are from government agencies. Like document BC.11 from customs.

3. Good communication with shipping companies
 If we have good communication with the shipping company. This can also speed up the Overbrenjen process. Because there are several documents that are hired from shipping companies. Apart from that, there is also information about the arrival of ships and ships that arrive on time or are delayed.

4. Professional workforce/employees
 Labor is also a driving factor in Overbrenjen delays. Because if the workforce is not professional then the Overbrenjen process will not run smoothly.

Apart from that, there are several other factors that inhibit Overbrenjen activities, namely:

1) Delay in taking Delivery Order (D/O)
2) Ships experiencing delays
3) Damage to the equipment at the UTPK which resulted in the container not being able to be lifted onto the truck and out of the UTPK.

IV. CONCLUSION

a. The results of the analysis regarding the relationship between late Overbrenjen and Stripping at PT Intermusa Hasta Buana using correlation analysis shows a value of $r = 0.83$. This proves that the influence of Overbrenjen delay on Stripping has a strong and positive relationship on the productivity of PT's Stripping Implementation Intermusa Hasta Buana.

b. From the results of hypothesis testing with an error rate of 5% on all sample data, the figure $t = 4.36 > t_{table} = 1.182$ is obtained so that $H_0 : r = 0$ is rejected and $H_a : r > 0$ is accepted, meaning there is a significant relationship between Overbrenjen Delay and implementation Stripping at PT, CFS Warehouse Intermusa Hasta Buana.

The results of the analysis of the influence of Overbrenjen delays on the implementation of Stripping using coefficient analysis show that the model regression equation is $Y = 9.17 + 1.01$, which means that if
the Overbrengen and stripping delay variables (X) increase by 9.17 times then the variable number of containers in Overbrengen and Stripping will increase by 1.01 times.

c. From the results of determining the determining coefficient, a figure of 68% was obtained, meaning that the influence of the Overbrengen delay on the implementation of Stripping in the CFS Warehouse of PT. Internusa Hasta Buana was 68% and the remaining 32% were other factors that were ignored.

d. There was a delay in Overbringing to the CFS PT warehouse. Internusa Hasta Buana is caused by several factors, including delays in Delivery Order documents from shipping companies, ships experiencing delays and damage to equipment at UTPK during Overbrengen which causes the smoothness of Overbrengen activities to the CFS Warehouse of PT. Internusa Hasta Buana to be disrupted.

REFERENCES

