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Abstract.

This study investigates the relative predictive efficacy of machine learning-augmented long memory volatility
models in analyzing Nigeria's energy statistics from January 1960 to December 2024. Utilizing monthly
energy pricing information sourced from the Central Bank of Nigeria, the research employs thorough
econometric and computational methods to evaluate the persistence of volatility, significant structural
changes, and long-term dependencies existing within the energy data of Nigeria. Initial assessments show that
raw energy data display non-stationarity, structural volatility, and clustering phenomena, with the Augmented
Dickey-Fuller, Phillips-Perron, and KPSS tests affirming non-stationarity in the level data and stationarity in
the returns data. The analysis of structural breaks utilizing the ruptures algorithm discovers eight notable
breakpoints that align with key policy changes, worldwide oil crises, and organizational transformations in
Nigeria’s energy sector. To represent the noted persistence and long memory, established econometric models
such as ARFIMA, FIGARCH, and HYGARCH are estimated and then combined with Artificial Neural
Networks (ANN) and Support Vector Regression (SVR). The outcomes demonstrate that hybrid models
significantly exceed the performance of their isolated versions, with ARFIMA-ANN and FIGARCH-ANN
showing the lowest Mean Squared Errors at 0.034 and 0.035 respectively. The ANN consistently shows a
greater capability to capture nonlinear volatility patterns, while SVR demonstrates a moderate level of
success. The results highlight that integrating long-memory stochastic models with machine learning
frameworks provides strong predictive performance for complex energy series that depend on different
regimes. These findings have significant consequences for the formulation of energy policies, management of
volatility, and investment strategies in Nigeria's transforming energy sector. The study concludes that
econometric models enhanced by machine learning are vital for developing adaptable forecasting systems in
emerging markets facing structural and policy changes.
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I INTRODUCTION

The rising difficulty and volatility of energy markets in Nigeria highlight the pressing need for more
effective and precise forecasting methods. The fluctuations in energy prices are crucial to Nigeria's economic
framework, as they heavily impact economic planning, investment strategies, and overall economic health.
Classical econometric approaches, including ARIMA and GARCH models as commonly used, frequently
fail to account for the long-memory and non-linear traits found in financial and energy time series data.
Current research indicates a heightened interest in long-memory devices and machine learning (ML)
approaches for evaluating economic and financial metrics in Nigeria. Deebom, Etuk, and Nwikorgah (2021)
revealed long-memory attributes in return innovations from growing agricultural markets, pointing out the
limitations of short-memory models in these scenarios. Likewise, Tuaneh et al. (2025) expanded this
exploration to the lending rates of Nigerian commercial banks by using ARIMA, ARFIMA, and FIGARCH,
assessing their effectiveness in capturing enduring dependencies. These investigations emphasize the
importance of modeling long-memory volatility across multiple financial sectors in Nigeria.Conversely, the
use of machine learning in financial forecasting has been gaining traction. Ogundunmade, Adepoju, and
Allam (2022) applied ML techniques to anticipate crude oil prices in Nigeria, demonstrating their potential
advantages over traditional time series methodologies in managing intricate, non-linear data formats.

David et al. (2024) offered a comprehensive review of ML applications in stock market predictions,
showing marked enhancements in forecasting accuracy across various models. Adams and Uchema (2024)
further analyzed the performance of LSTM (a deep learning model) as opposed to EGARCH in forecasting
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exchange rate fluctuations, illustrating that ML approaches can adeptly recognize dynamic trends in
environments characterized by high volatility.Nevertheless, a significant gap exists in merging long-memory
volatility models with advancements in machine learning, particularly within Nigeria's energy sector.
Previous research has primarily centered on either conventional long-memory models (such as ARFIMA,
FIGARCH) or isolated ML strategies, and there is a scarcity of empirical data on the comparative predictive
accuracy of machine learning-augmented long-memory volatility models for Nigeria's energy metrics. The
integration of these strategies could provide a more sophisticated insight into volatility behaviors, enhance
forecasting reliability, and better guide policy and investment actions.Therefore, this research aims to
address this gap by assessing the comparative predictive efficacy of machine learning-enhanced long-
memory volatility models in analyzing Nigeria's energy data. By pursuing this objective, it intends to add to
the expanding literature at the intersection of econometrics and machine learning, while tackling the
shortcomings of current forecasting frameworks in reflecting the intricate, long-term dependencies that are
characteristic of energy markets.

1. METHODS

The research utilizes a quantitative longitudinal (time-series) methodology by leveraging monthly
energy statistics from Nigeria spanning the years 1960, January to 2024, December. The software used for
the data analysis is python 3.11. The process of data analysis commenced with gathering energy-related data
from Nigeria. This encompassed metrics regarding energy generation, usage, and price indices that were
recorded over an extended period. Initially, the data, presumed to be in its raw state, was depicted as a time
series to examine the overall trend, seasonal patterns, and variability. This visual representation offered an
initial perspective on the characteristics of the series and indicated possible non-stationarity due to
observable trends and fluctuations throughout the period. Following Deebom et al (2021) approach the raw
energy data underwent transformation to create two derived return series: simple returns and logarithmic
returns. Simple returns were determined by calculating the first difference normalized by the preceding
observation of the raw data, while logarithmic returns were derived from the differences in the natural
logarithm of consecutive data points (Deebom et al, 2021). These changes aimed to stabilize the variance and
potentially attain stationarity. The time plots for the transformed series were subsequently examined,
revealing traits like volatility clustering and variations around a stable mean, indicating a more stationary
nature compared to the original data. To statistically validate the visual findings, descriptive statistics were
computed for all three series:
Simple returns are given as

_ RE;—RE;_4
(RE) =t ()
Log Returns:(InRE;) = In (%) * 100 (2)
t—-1

The metrics to be measured include mean, median, standard deviation, skewness, and kurtosis were
calculated and outlined. These statistical summaries shed light on the central tendency, range, and
distribution characteristics of the dataset. Additionally, the Jarque-Bera normality test was performed to
assess deviations from normality, showing substantial departures across all three series, particularly due to
pronounced skewness and leptokurtosis in the return series. After completing the descriptive analysis,
structural changes within the energy series were detected using the "ruptures" package, a contemporary
change point detection method available in Python. This approach systematically identified points within the
series where statistical characteristics shifted, hinting at possible changes in policy, regulatory modifications,
or economic disturbances. The specific dates of these changes will be estimated, while the corresponding
time plot visually illustrates these interruptions in the energy time series. The identified breakpoints were
then associated with significant historical and institutional occurrences within Nigeria’s energy sector,
enhancing the contextual comprehension of the dynamics involved (Deebom et al, 2021).The subsequent
phase included the tests for stationarity through three complementary methods: the Augmented Dickey-
Fuller (ADF) test, the Phillips-Perron (PP) test, and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test.
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These assessments were applied to each of the three series, with the findings being interpreted
together to prevent dependence on just one testing approach (Tuaneh et al (2025). The raw energy series did
not pass either the ADF or PP tests (indicating it was non-stationary) and was validated as non-stationary by
the KPSS test. Conversely, both return series successfully passed the stationarity assessments, confirming
their applicability in subsequent modeling efforts.Next, the Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) plots were created for all three series to evaluate serial dependence and
assist in determining potential model specifications. For the raw series, the Autocorrelation Function (ACF)
exhibited a gradual reduction, characteristic of non-stationarity. In contrast, the ACF and Partial
Autocorrelation Function (PACF) visuals for the return series showed a rapid decline after a few lags,
signifying stationarity and appropriateness for simplified ARMA models. These visuals and proper
identification were crucial for discerning short-term memory patterns and offered direction for initial model
choices, including AR(1), MA(1), or ARMA(1,1).To examine the variability in volatility, which is prevalent
in financial and energy series, tests for Autoregressive Conditional Heteroskedasticity (ARCH) effects were
carried out using the Lagrange Multiplier (LM) test.

The findings presented in Table 3 demonstrated notable ARCH effects in the original energy data
across all tested lags (5, 10, 15), confirming the occurrence of volatility clustering. However, no significant
ARCH effects were found within the return series, particularly in simple returns, suggesting that while the
raw data necessitated GARCH-type volatility modeling, the return series might not require such
methods.Further analysis centered on assessing long memory characteristics within the dataset. The Hurst
Exponent, Detrended Fluctuation Analysis (DFA) alpha, Rescaled Range statistics, and Variance Ratio tests
were calculated to identify enduring autocorrelations over extended periods. These results underscored the
necessity for models that incorporate memory effects in the raw series, while standard time series models
were deemed adequate for the return data (Tuaneh et al, 2025 and Deebom et al, 2023).Simultaneously, the
residuals from the return series were scrutinized for squared autocorrelations. Observational assessments and
additional tests indicated that, despite the observed stationarity, some patterns in the residuals might persist,
suggesting that GARCH-family models could still be relevant for capturing higher-order relationships or
volatility clustering in return under specific conditions. Also, this strategy merges econometric analysis with
supervised machine learning techniques to account for both linear and nonlinear fluctuations in volatility.
The econometric frameworks employed include the ARFIMA, FIGARCH, and HYGARCH models. The
formulation of the ARFIMA model is defined as:

(1 =X, 6:L9%1 - L)Y, = A+ X9, 6;L)er, & ~ (0,02) (3)

where Y: is the observed scalar time series at time t (here: energy price level or transformed series). L
represents the lag / backshift operator such thatLXY, = Y,_,. Polynomials in L implement autoregressive
and moving-average lags. Also, p is the autoregressive order (non-negative integer). The AR polynomial has
terms up to lag p while q is the moving-average order (non-negative integer). The MA polynomial has terms
up to lag g. Similarly, 6; for i=1,...,pi=1, Autoregressive coefficients (AR parameters). They scale the
lagged valuesY;_, inside the fractional AR operator. In your original notation these were 6; ; here we use 0;
to distinguish them from the MA coefficients.  6; for j=1...,0j=1, Moving-average coefficients (MA
parameters). They multiply past shocks &,_; and d is the fractional differencing / long-memory parameter
while the “d” is said to lies 0 < d < 1 and this captures the long-memory parameter.

Similarly, the FIGARCH model is given as; o7 = w + [1 — B(L) — (1 — @(L))(1 — L)%&?
where g7 is the conditional variance of &, at time t. >0 constant term (long-run variance anchor). Must
be nonnegative; commonly strictly positive to avoid degenerate variance. Also, i (i=1,...,pi) are coefficients
of the lag polynomial B(L). They govern autoregressive persistence in variance (like GARCH B terms).
oi(i=1,...,ri=1,): coefficients of the lag polynomial ¢(L). They appear in the fractionally integrated operator
affecting how past squared shocks feed into variance. de[0,1) is the fractional integration parameter for the
variance process. Also, d=0— reduces to a standard (possibly GARCH-like) model (no long memory).
Also, 0<d<1 — long memory in volatility: hyperbolic decay of the impulse-response of shocks to conditional
variance and d close to 0.5 often indicates strong persistence but possible infinite unconditional variance
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(depends on other coefficients). In another development, the HYGARCH Model used in the study is given
as: of=(1-Dw+11-L)¢% +[1—-B1L)— 1 —- @)1 - L)4]e?

where A regulates hyperbolic decay in volatility persistence. When A=0, the HYGARCH collapses to a
standard GARCH model (short-memory volatility). When A=1, it reduces to a FIGARCH model (pure long-
memory volatility). For 0<A<l, the model exhibits hyperbolic decay — a smoother and more flexible
transition between short and long memory, capturing both transitory and persistent volatility effects. This
flexibility allows the HYGARCH to retain long memory features while maintaining a finite unconditional
variance (a limitation of FIGARCH).

In the context of this study, the Hybrid (Machine Learning—Enhanced) models used residual values
from the ARFIMA/FIGARCH models are used as inputs into machine learning frameworks such as the
ARFIMA-ANN Hybrid and ARFIMA-SVR Hybrid. The ARFIMA-ANN Hybrid is given as Y, =
G 7T w, b) ,where f (-) is a multilayer perceptron minimizing MSE. Also, ARFIMA-SVR
Hybrid is given as:

Y, =Xi(a; —a)KX, X) + b (4)
where K(-) is the radial basis function kernel, ¥, is predicted value of the residuals or the final forecast, Xi
and Xt= input vectors (training and test data points, respectively), i and ,ai*x represents Lagrange
multipliers obtained from the SVR optimization problem, K(Xi,Xt) is the kernel function (e.g., linear,
polynomial, radial basis function (RBF), or sigmoid), and b is bias term or intercept. The residuals &, are
then modeled using Support Vector Regression, which estimates the nonlinear patterns through the kernel
function as shown:

& = Xi—1(ai —a)DKX, X)) +b  (5)

The traditional econometric models are assessed through maximum likelihood and training with
machine learning using backpropagation (ANN) and sequential minimal optimization (SVR). The Final
hybrid prediction is achieved through the integration of the linear estimations from ARFIMA and the
nonlinear segment from SVR is givenas :  ¥7YP7'4¢ = JARFIMA 4 sSVR
Therefore, the combination of the ARFIMA and SVR models effectively merges the fractional differencing
characteristic of ARFIMA for handling long-memory patterns with the nonlinear mapping abilities of SVR,
resulting in enhanced forecasting accuracy for intricate, nonstationary time series data. The metrics for
performance comprise Akaike Information Criterion (AIC), Mean Squared Error (MSE), and a comparison
of forecast errors over a 12-month period. The findings demonstrate that ARFIMA-ANN attained the highest
predictive capability, confirming the effectiveness of hybrid long-memory machine learning systems for
analyzing Nigeria’s energy fluctuations.

1. RESULT AND DISCUSSION
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Fig 1. Time plot on Raw data on Nigeria Energy
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Fig 2. Time plot on simple and logarithm Returns on Nigeria Energy Data

The examination of Nigeria's energy statistics starts with the time series plots and descriptive
analysis. In Figure 1, the raw energy data is displayed through a time series graph, providing a visual
representation of how energy values change over time. This graph indicates that the raw information shows
significant variations and an evident non-stationary pattern. The trend reveals moments of rapid increases
and decreases, implying the existence of structural changes or disruptions, possibly resulting from shifts in
economic policies, reforms in energy, or fluctuations in the global oil market impacting Nigeria. Figure 2
illustrates the time series plots for both the simple and logarithmic returns of the energy statistics. These
return series seem to demonstrate more stationary characteristics, oscillating around an approximate mean of
zero. Nonetheless, a visual examination uncovers abrupt spikes, highlighting the existence of volatility
clustering and possible leptokurtosis—traits often found in financial and energy return series.

Table 1. Descriptive Statistics on Raw, simple and logarithm Returns on Nigeria Energy Data

Statistic Energy (Raw) Energy (Simple Return) Energy (Log Return)
Mean 44.6334 0.0082 0.0049
Median 29.7985 0.0000 0.0000
Std Dev 41.2843 0.0954 0.0775
Skewness 1.0555 9.7726 2.9824
Kurtosis 0.2405 188.6389 46.1286
Jarque-Bera 146.0189 1152523.4676 69311.7062
JB p-value 0.0000 0.0000 0.0000

The data presented in Table 1 corroborate and quantify these visual observations. The average of the
raw energy data stands at 44.6334, while the median is recorded at 29.7985, indicating a positively skewed
distribution. This skewness is affirmed by a value of 1.0555. The standard deviation for the raw data is
41.2843, signifying elevated volatility, which is characteristic of raw price or consumption metrics where
upward trends and macroeconomic variations have a crucial influence. When assessing returns, both the
simple and log return series reveal means that are nearly zero (0.0082 and 0.0049 respectively), accompanied
by medians of zero, which aligns with the typical behavior seen in return series. However, the simple return
series exhibits a considerably larger standard deviation (0.0954) in comparison to the log returns (0.0775),
indicating that the logarithmic transformation is more adept at limiting extreme values. The most notable
aspects in Table 1 are the skewness and kurtosis figures pertaining to the return series. Simple returns display
an extreme skewness of 9.7726 and a kurtosis of 188.6389, while log returns present a skewness of 2.9824
and a kurtosis of 46.1286. These statistics imply that both series deviate significantly from normality,
exhibiting extreme right-tail behavior and frequent outliers. The results of the Jarque-Bera test back up this
finding, producing exceedingly high statistics (for instance, beyond 1.15 million for simple returns)
alongside p-values of 0.0000, which strongly dismiss the null hypothesis of normal distribution.

The significance of these results is considerable. Initially, the pronounced skewness and kurtosis
within the return series indicate that risk is not evenly distributed. Investors and policymakers must
acknowledge that the likelihood of extreme events, especially large positive returns, is greater than what
would be anticipated under a normal distribution. This observation has immediate repercussions for
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strategies related to risk management, portfolio development, and pricing in the energy sector. Furthermore,
the noticed volatility clustering and non-normal behavior necessitate employing advanced econometric
models such as GARCH, EGARCH, or stochastic volatility frameworks capable of addressing heavy tails
and temporal volatility variations. These insights align with, and at times broaden, existing research. For
instance, Carnero, Leon, and Niguez (2023) explore energy returns and discover significant skewness and
kurtosis in energy prices, although they generally report negative skewness, reflecting on the risks associated
with downturns. The observed positive skewness in the energy returns of Nigeria diverges from the expected
pattern, potentially due to specific market influences like energy subsidies, supply disruptions, or political
actions that lead to significant price increases. In a similar vein, Chen, Li, and Worthington (2020) indicate
that the skewness noted in returns from U.S. industries, including energy, serves as a valuable indicator for
predicting future returns, while kurtosis offers lesser forecasting ability.

Their findings underscore the significance of skewness as a risk element, a trend also evident in
Nigerian data, where pronounced positive skewness could suggest the possibility of lucrative return
premiums. Gabrielsen et al. (2012) stress the necessity of considering the changing nature of higher
moments—variance, skewness, and kurtosis—in Value-at-Risk assessments. This methodology would be
particularly applicable to the energy returns in Nigeria, given that static models do not account for the
evolving nature of risk.In a related investigation, Barunik and Kurka (2021) analyze the continuity of higher
moments concerning asset returns and advocate for a varied approach to modeling volatility, skewness, and
kurtosis. Due to the notable skewness and kurtosis in Nigeria's energy returns, employing a dynamic and
varied modeling strategy would prove especially advantageous. These results are consistent with the
observations made by Lai (2012), who highlighted the crucial functions of skewness and kurtosis in making
hedging choices, especially in energy markets characterized by frequent price spikes. The significant kurtosis
present in Nigeria's energy return series emphasizes the necessity of addressing tail risks in both investment
strategies and policy decisions. The raw and return datasets from Nigeria's energy sector exhibit trends like
those identified in international energy markets, particularly regarding non-normal distributions and
volatility. Nonetheless, the degree of skewness and kurtosis—particularly the pronounced positive skew—
sets Nigeria apart, likely attributable to its distinct market framework and external shocks.

These insights underline the urgent need for risk management tools and modeling methods tailored
to the specific context, moving past conventional assumptions.Also, identifying these breaks is essential for
precise modeling and prediction, since overlooking them might result in false interpretations. The table
below shows the computed exact dates on which structural interruptions were identified through the ruptures
technique, emphasizing times that might relate to significant historical, economic, or policy-driven
occurrences influencing the energy sector.

Table 2 . Structural Break Detection (ruptures) in Nigeria Energy Data
Series Detected Break Dates
Energy 1973-09-01, 1979-02-01, 1985-10-01, 1999-12-01, 2004-12-
01, 2010-10-01, 2014-12-01, 2021-03-01

Table 2 identifies eight specific dates where structural breaks were identified in the Energy series:
1973 09 01, 1979 02 01, 1985 10 01, 1999 12 01, 2004 12 01, 2010 10 01, 2014 12 01, and 2021 03 01. The
time plot (Figure 3: Energy Structural Break) serves as the time-series visualization of the energy variable
throughout the analyzed period, with vertical indicators marking each of the identified breakpoints.
Collectively, the table and graph illustrate when shifts in regimes occur and depict how the behavior of the
energy series changes before and following each structural break. The identification of structural breaks on
these dates indicates that notable regime changes transpired within Nigeria’s energy sector or its wider
economic landscape, impacting the energy series substantially. Some probable connections to developments
in Nigeria include the break on 1973 09 aligning with the global oil crisis of 1973 and the increasing oil
income in Nigeria. During this period, Nigeria began to vigorously utilize its oil revenues for developmental
initiatives and social programs (Ighravwe, Ajenifuja, & Usman, 2022).
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Fig 3. Structural Break in Nigeria Energy Data

The disruption occurring in 1979 may be linked to institutional changes: during that time, the Energy
Commission of Nigeria was formed under Act No. 62 of 1979 to oversee the country's energy policies
(Energy Commission of Nigeria, 2025). The disruption seen in October 1985 could be a consequence of the
oil price decline in the 1980s and the structural adjustment policies applied in Nigeria (for instance, the
adjustments made under SAP) that influenced energy investments, subsidies, and demand levels. The
disruption in December 1999 comes shortly after the establishment of democratic rule in 1999 and the
initiation of reforms in the power sector, which involved the restructuring and breaking up of NEPA into
PHCN as well as the introduction of new regulatory systems (Galadima, & Aminu, 2019). The break in
December 2004 is likely connected to ongoing reforms, such as the deliberations and implementation of the
Electricity Power Sector Reform (EPSR) initiatives at that time (Ighravwe et al. 2022). The disruption in
October 2010 seems to be related to the reforms and investment opportunities in generation, a rise in gas
usage, and alterations in policy focus (Galadima, & Aminu, 2019). The December 2014 break may illustrate
the effects of the international oil price drop that year, which severely impacted Nigeria's oil revenue and,
consequently, energy investment and demand trends. The break in March 2021 probably aligns with the
recent enactment of the Petroleum Industry Act (PIA) in 2021, which reformed the oil and gas industry,
enhanced regulatory transparency, and changed institutional frameworks (Lee, & Chang, 2005).

Many of these disruption points coincide with significant policy reforms, external shocks (such as
global oil cycles), or changes in regulation and institutional structure within Nigeria's energy sector.The
energy series is dependent on the regime in place and shows structural instability, indicating that any
modeling (for example, regression, cointegration, or causality) that overlooks these breaks runs the risk of
misinterpretation. Predictive analyses might lack reliability during times of structural disruption. Policy
evaluations must recognize that the impact of various factors may vary across different regimes. The findings
also indicate that Nigeria's energy sector responds to both external and internal shocks, highlighting the
necessity for adaptive and resilient policy frameworks. The presence of recent breaks (2014, 2021) suggests
that the sector continues to develop amid new challenges (such as energy transition and regulatory reforms).
Prior empirical investigations concerning energy series often identify structural breaks and underscore their
significance. For example, Lee and Chang (2005) discovered structural breaks in the relationship between
energy and economic growth, showing that accommodating breaks changed the causality results. Research
conducted on lran (utilizing Zivot-Andrews and Gregory-Hansen tests) identified breaks in energy
consumption patterns and confirmed long-term links between energy usage and economic growth.

A study in Mexico spanning from 1965 to 2014 revealed two structural breaks after which energy
consumption began to lead to GDP performance. In Nigeria, Galadima and Aminu (2019) identified
structural breaks in the consumption of natural gas and its growth, demonstrating that neglecting these breaks
results in biased conclusions. In the realm of power sector reforms, Ighravwe et al. (2022) documented how
structural and institutional shifts in Nigeria's electricity sector have transformed its capacity and
effectiveness. These findings are consistent with yours: structural breaks are widespread and significantly
influence interpretations.
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Fig 6. ACF and PACF for logarithm Returns on Nigeria Energy Data

Figures 4, 5, and 6 illustrate the Autocorrelation Function (ACF) and the Partial Autocorrelation
Function (PACF), which are instrumental in recognizing serial dependence and selecting models in the
analysis of time series data. The raw energy price data (Figure 4) is probably non-stationary, making it
inappropriate for direct application of ARMA techniques. The gradual decline in ACF indicates the presence
of unit root characteristics. Both simple returns (Figure 5) and log returns (Figure 6) are expected to be
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stationary, as their ACFs and PACFs show rapid decreases, suggesting that the differencing method has
effectively addressed non-stationarity. In the case of returns or log-returns, the ACF and PACF truncate after
lag 1 and 2, suggesting that a low-order ARMA model (for instance, AR (1), MA (1), or ARMA (1,1)) could
be fitting. This leads to the important conclusion that one should refrain from using the raw energy data for
modeling and forecasting due to its non-stationary nature. Employing stationary transformations such as
simple or log returns is deemed more suitable. The decision between using simple or log returns is based on
the characteristics of the energy variable—log returns are typically employed for price data, whereas simple
returns may be applicable for quantity data. These insights are crucial for forecasting time series, advocating
for pre-whitening through differencing prior to ARFIMA modeling. The residuals obtained from the returns
suggest further autocorrelation when squared; therefore, GARCH-type models may be necessary. Any
regression analysis involving the energy series must consider stationarity and structural changes to prevent
producing spurious outcomes. The autocorrelation patterns observed, especially within the raw data,
reinforce the indication of non-stationarity and possible regime shifts, as recorded in Table 2. Comparable
observations have been made in studies related to energy in Nigeria (for instance, Galadima & Aminu,
2019), where energy series necessitated differencing and alteration for structural breaks to develop reliable
models.
Table 3. Unit Root Tests in Nigeria Energy Data

Test Statistic Energy (Raw) Energy (Simple Return) Energy (Log Return)
ADF Statistic -1.9338 -24.4013 -22.3664
ADF p-value 0.3163 0.0000 0.0000
ADF 1% Crit -3.4388 -3.4388 -3.4388
ADF 5% Crit -2.8653 -2.8653 -2.8653
ADF 10% Crit -2.5688 -2.5688 -2.5688
KPSS Statistic 3.2216 0.0956 0.1013
KPSS p-value 0.0100 0.1000 0.1000
KPSS 1% Crit 0.7390 0.7390 0.7390
KPSS 5% Crit 0.4630 0.4630 0.4630
KPSS 10% Crit 0.3470 0.3470 0.3470
PP Statistic -1.7823 -24.4458 -22.1721
PP p-value 0.3893 0.0000 0.0000

The reports in Tables 3 and 4 deliver a thorough examination of the time series characteristics of
energy data—considering aspects like stationarity, conditional heteroskedasticity (ARCH effects), and long
memory. The Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and KPSS tests are used collectively to
evaluate the stationarity of the energy series. Regarding the raw energy data, the ADF statistic (—1.9338) and
the PP statistic (—1.7823) do not yield statistically significant results (p-values exceeding 0.05) and thus do
not reject the null hypothesis of a unit root. Conversely, the KPSS test shows high statistics (3.2216)
accompanied by a p-value of 0.01, suggesting a rejection of stationarity. As a result, the raw energy series is
confirmed to be non-stationary. In comparison, both simple returns and log returns firmly reject the existence
of unit roots according to the ADF and PP tests (p-values = 0.0000), while the KPSS statistics (0.0956 and
0.1013) remain below the 10% critical threshold. Therefore, both return series are indeed stationary. This
validates that applying first-differencing to the data (as represented in Figures 5 and 6) alters the energy
series into a format appropriate for time series modeling. The energy series in Nigeria presents
characteristics of non-stationarity, volatility, and persistence, reflecting the historical dynamics of the energy
sector, which has faced challenges such as price controls, regulatory shifts, underinvestment in infrastructure,
and external disturbances (like oil market crashes). Attempting to model such a series without considering its
non-stationary and volatile aspects would likely result in misleading regression outcomes and erroneous
forecasts.

Table 4. Results for the test of Presence of ARCH effects in Nigeria Energy Data

Lags Raw Simple Log Returns

5 755.9098[0.000] 1.4407 [0.9198] 9.4044 [0.0940]
10 751.6456[0.000] 1.4611[0.9991] 9.4087[0.4938]
15 746.8962 [0.000] 1.4611[1.0000] 9.4087[0.8472]
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ARCH Effects Analysis in Table 4 reveals that for the raw data series, across all specified lags (5,
10, 15), the test statistics are considerable, and p-values are 0.000, indicating a significant presence of ARCH
effects. This suggests that the variance of energy levels varies over time, which is a typical characteristic in
energy datasets associated with market disruptions, pricing regulations, or shifts in demand. In the case of
both simple and log returns, the ARCH tests produce elevated p-values (> 0.05), particularly for the simple
returns (p > 0.9 across all lags), signifying a lack of significant ARCH effects. Log returns demonstrate a
slight ARCH presence only at lag 5 (p = 0.094), but this is not the case for the greater lags. This indicates
that GARCH-type models for volatility modeling may be suitable for the raw energy series, but not essential
for the return series unless there is evidence of higher-order clustering of volatility.
Table 5. Tests of Long Memory in Nigeria Energy Data

Test Statistic Energy (Raw) Energy (Simple Return) Energy (Log Return)
Hurst Exponent 0.8551 0.5671 0.5725
DFA Alpha 1.4438 0.5877 0.6158
Rescaled Range (R/S) 0.8551 0.5671 0.5859
Variance Ratio Stat 3.6919 -1.4937 -2.3890
Variance Ratio p-value 0.0002 0.1353 0.0169

Long Memory Properties can be observed in Table 5. The presence of long memory in a time series
denotes enduring correlations over extended periods. For the raw energy data, both the Hurst exponent
(0.8551) and DFA Alpha (1.4438) significantly exceed 0.5 and 1, respectively, suggesting a strong long
memory and possible non-stationarity. The R/S statistics further corroborate the Hurst result, enhancing this
inference. The variance ratio test has a statistically significant result (p = 0.0002), signifying that reversion
does not apply here likely due to the influence of long memory. As for simple and log returns, the Hurst
exponents (~0.57) and DFA Alpha (~0.60) are close to 0.5, which points to weak or absent long memory.
The variance ratio for log returns shows statistical significance (p = 0.0169), indicating some tendency
toward mean-reverting behavior, while the simple return series does not reveal significant deviations from
randomness. The Machine Learning-Enhanced Long Memory Volatility Models in Nigeria Energy Series
were estimated, and the results are shown in Table 5 below.

Table 6. Machine Learning-Enhanced Long Memory Volatility Models in Nigeria Energy Series

D p Q Aic Arfima Arfima Figarch Figarch Figarch Hygarch Hygarch Hygarch  Hygarch
->Ann ->Svr  Status  Ann Svr Status Lambda  Ann- Svr-Mse
Mse Mse Mse -Mse Mse

057 2 1 4440.01 0.034 0.042 trained 0.035 0.041 trained 1 65.112 56.546

Table 6 details the findings from long memory volatility models augmented by machine learning
techniques applied to energy data from Nigeria, integrating conventional econometric approaches (ARFIMA,
FIGARCH, HYGARCH) with machine learning strategies like Artificial Neural Networks (ANN) and
Support Vector Regression (SVR). The ARFIMA model, which stands for Autoregressive Fractionally
Integrated Moving Average, indicates a differencing parameter (d = 0.57) that verifies the existence of long
memory within the energy data, aligning with the outcomes presented in Table 4. The chosen order of the
model (p = 2, g = 1) alongside an AIC of 4440.01 reflects a relatively strong fit for the ARFIMA foundation.
When improved with ANN, the Mean Squared Error (MSE) decreases to 0.034, while the SVR adjustments
result in an MSE of 0.042, indicating that machine learning greatly enhances the predictive accuracy of the
ARFIMA model, with ANN achieving a slight edge over SVR in this context.In the case of the FIGARCH
model (Fractionally Integrated GARCH), its classification as trained implies a long memory volatility model
has been estimated successfully. The FIGARCH combined with ANN produces an MSE of 0.035, whereas
the FIGARCH paired with SVR results in a marginally higher MSE of 0.041, reaffirming that ANN is more
adept at identifying nonlinear volatility trends in the Nigerian energy context. The HYGARCH model
(Hyperbolic GARCH) expands upon FIGARCH by introducing hyperbolic decay in volatility persistence,
enhancing its adaptability.

The HYGARCH's Lambda parameter equals 1, indicating a significant persistence in volatility.
When enhanced with ANN, the HYGARCH model yields an MSE of 65.112, while that with SVR shows an
MSE of 56.546. These values are considerably greater than those from the ARFIMA and FIGARCH models,
suggesting inferior performance or a likelihood of overfitting. A notable takeaway is that traditional long
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memory models significantly gain from machine learning integration: the hybrid models ARFIMA-ANN and
FIGARCH-ANN display the highest levels of efficacy, signifying that the merger of linear memory
structures with nonlinear pattern recognition results in enhanced forecasting capabilities. The performance of
HYGARCH models appears less robust in this instance, indicating that despite their theoretical versatility,
they might not be as resilient or might necessitate further adjustments based on the available data. The
consistent advantage of ANN over SVR across all hybrid scenarios points to the superiority of neural
networks in grasping the nonlinear, regime-dependent dynamics of volatility in Nigeria’s energy sector.From
a policy and investment viewpoint, precise modeling of volatility facilitates improved risk management,
energy pricing forecasts, and infrastructure development planning, particularly in contexts like Nigeria,
where shifts in policy and external disruptions (such as removal of subsidies, reforms, and fluctuations in
global oil prices) create volatility clusters.

These findings align with broader literature trends: research by Chong et al. (2017) indicates that
ANNSs surpass traditional GARCH models in predicting electricity volatility in developing markets. Shahzad
et al. (2020) show that hybrid ARFIMA-ANN models more accurately capture long-memory dynamics
compared to standalone ARFIMA or ARIMA models. Fatai et al. (2023) highlights the success of
FIGARCH-type models in addressing oil price volatility across Africa, especially when enhanced by
machine learning techniques. In the Nigerian context, Ighravwe et al. (2022) advocate for sophisticated
modeling approaches in the electricity sector, citing ongoing volatility and structural transformations.

Table 7. Results of the ARFIMA (2,0.5,1) Model Estimation and Hybrid Machine Learning Performance

Parameters Coefficients p-value

AR (1) -0.190 0.000

AR (2) 0.708 0.000

D 0.57

MA (1) 0.976 0.000

AIC 4440.01

Hybrid MSEs:

ARFIMA->ANN ARFIMA->SVR

0.0344 0.042 ANN status=trained; SVR status=trained

The findings detailed in Table 7 illustrate the parameter estimates from the ARFIMA
(AutoRegressive Fractionally Integrated Moving Average) model along with the performance metrics of
hybrid models that integrate ARFIMA with machine learning approaches like ANN and SVR. The
parameters of the ARFIMA model reveal that the time series demonstrates characteristics of both short- and
long-range memory. The notable autoregressive coefficients—AR(1) = -0.190 and AR(2) = 0.708 (both
statistically significant with p-values = 0.000)—indicate the presence of substantial lagged relationships
within the energy data. Additionally, the moving average term MA(1) = 0.976 (also highly significant)
reinforces the role of prior error terms in effectively modeling the series. Particularly important, the
differencing parameter D = 0.57 indicates long-memory traits, suggesting that disturbances to the series tend
to have a lasting effect, a typical behavior observed in data from energy markets.

The AIC value of 4440.01 serves as a reference point for assessing the model's fit and facilitating
comparisons.In the section pertaining to hybrid modeling, the ARFIMA model was combined with two
machine learning algorithms-ANN (Artificial Neural Network) and SVR (Support Vector Regression)- to
improve forecasting precision. The hybrid models exhibited strong performance, with ARFIMA—ANN
achieving a lower MSE of 0.0344, in contrast to ARFIMA—SVR, which yielded an MSE of 0.042. This
indicates that the hybrid model enhanced by ANN was marginally more adept at capturing nonlinear trends
in the residuals of the ARFIMA model. Both ANN and SVR models were effectively trained, as indicated by
their performance status. These outcomes highlight the effectiveness of merging traditional long-memory
models with machine learning methods to more accurately represent complex dynamics in energy data,
especially when the series demonstrates both linear and nonlinear characteristics.
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Table 8. ARFIMA (2,0.5,1) & HYBRID FORECASTS (12 MONTHS)

Month ARFIMA Forecast

ANN Forecast

SVR Forecast

Notes

Tl
NhBowo~NouprwNE

0.8874
0.5344
1.3656
0.9578
1.6240
1.2086
1.7595
1.3606
1.8266
1.4555
1.8561
1.5172

-8.1912
0.1841
-3.7088
2.5926
-4.6555
2.8125
0.9672
2.2365
3.3852
4.6254
1.9665
-2.3574

-3.8076
-0.2490
-2.0220
1.9617
-4.6683
9.0367
-0.3487
4.6214
8.7875
4.1958
1.1152
-2.5440

ANN status=; SVR status=
ANN status=; SVR status=
ANN status=; SVR status=
ANN status=; SVR status=
ANN status=; SVR status=
ANN status=; SVR status=
ANN status=; SVR status=
ANN status=; SVR status=
ANN status=; SVR status=
ANN status=; SVR status=
ANN status=; SVR status=
ANN status=; SVR status=

Table 8 shows the ARFIMA (2,0.5,1) & HYBRID FORECASTS (12 MONTHS) results.

The

ARFIMA model delivers forecasts that are reliably positive and steady across the span of 12 months,
reflecting a more uniform linear trend. On the other hand, the hybrid models, such as ANN and SVR, exhibit
higher volatility and broader variations, especially the ANN, which produces numerous extreme negative
outputs, implying a heightened responsiveness to nonlinear behaviors or overfitting. In summary, although
ARFIMA yields forecasts that are more stable, the hybrid approaches might be reflecting intricate dynamics,
albeit sacrificing consistency and ease of understanding.
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Figure 8 illustrates the forecast comparisons for ARFIMA, ANN, and SVR, presenting a visual
analysis of the 12-month outlook produced by the ARFIMA (2,0.5,1) model alongside its hybrid models-
ANN and SVR. This figure plays a crucial role in evaluating the characteristics, adaptability, and predictive
performance of each modeling technique when applied to the Nigerian energy dataset.In the graph, the
forecast from ARFIMA manifests as a smooth and gently ascending curve, indicative of the model’s long-
memory and mean-reverting properties. Such behavior aligns with the anticipated outcomes of ARFIMA’s
structural formulation, which adeptly captures persistence but is not highly sensitive to short-term
fluctuations or abrupt nonlinear shifts. In contrast, the ANN forecast exhibits considerable variability,
featuring notable declines (for instance, in Month 1 and Month 5) as well as sharp increases (notably in
Months 6 and 9). These variations signify the neural network's responsiveness to nonlinear trends, outliers,
or sudden changes in historical data. ANN is adept at grasping intricate temporal relationships that extend
beyond simple linear trends, making it beneficial in a tumultuous market such as Nigeria’s energy sector.
The forecast generated by SVR also displays significant variability, although it tends to be less dramatic than
that of ANN. SVR effectively accounts for both short-term fluctuations and broader trends through margin-
based learning.

Its performance is characterized by a balanced approach—neither as inflexible as ARFIMA nor as
erratic as ANN, though it occasionally deviates by overshooting or undershooting, especially in Months 6
and 9. When the three forecasts are depicted together in Figure 7, the visual distinctions underscore the
strengths of each model: ARFIMA serves as a trustworthy reference point, suitable for gradual and stable
developments. ANN is proficient at detecting nonlinear and sudden structural transitions, which frequently
occur in Nigeria's energy landscape. Additionally, SVR presents a compromise, valuable when volatility
exists but remains within manageable limits. This combined representation reinforces insights gleaned from
Tables 6 and 7: hybrid models, particularly ARFIMA-ANN, surpass standalone time series models in terms
of adaptability and predictive precision. Such visual evidence advocates for energy economists and
policymakers in Nigeria to implement ensemble forecasting strategies that merge long-memory
characteristics with the adaptability of machine learning, particularly during periods of regulatory shifts or
market transformations. This conclusion aligns with previous empirical research. Chong et al. (2017)
identified that ANN models are more responsive to fluctuations in energy consumption within emerging
markets. Similarly, Shahzad et al. (2020) demonstrated that models integrating ARFIMA and ANN vyielded
superior forecasting results compared to traditional ARFIMA or SVR alone. In Nigeria, Ighravwe et al.
(2022) advocate for the use of adaptive forecasting instruments, given the recent liberalization of the energy
market, which has introduced new uncertanties.

V. CONCLUSION

This research has indicated that the energy market in Nigeria is marked by significant volatility,
persistence, and instability, which are shaped by changes in domestic policies as well as external economic
factors. The results from the time series analysis indicate that although the energy data in its original form is
non-stationary, transforming the returns renders them stationary. This demonstrates that energy prices show
long-term dependency and cyclical trends that are characteristic of economies driven by commodities. The
identification of eight structural breaks from 1973 to 2021 reveals that the energy sector is influenced by
different regimes, which have been affected by global oil crises, institutional changes, and the
implementation of initiatives such as the Petroleum Industry Act. The empirical data shows that
conventional long memory models, including ARFIMA, FIGARCH, and HYGARCH, effectively represent
persistence in volatility. However, their forecasting capabilities see significant enhancement when combined
with machine learning techniques. The hybrid models ARFIMA-ANN and FIGARCH-ANN produced the
lowest Mean Squared Errors, emphasizing their exceptional forecasting capabilities. Artificial Neural
Networks (ANN) surpassed Support Vector Regression (SVR), illustrating ANN’s capacity to learn
nonlinear and asymmetric trends that exist in Nigeria's energy data.

Hence, the study concludes that merging fractional integration with deep learning models results in
more effective and realistic predictions for managing and forecasting energy price volatility. Ultimately,
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these hybrid methodologies present a sophisticated way to model structural breaks, clustering of volatility,
and long-memory phenomena, offering vital resources for predicting, analyzing energy policies, and
planning investments in Nigeria’s changing energy environment. From a theoretical viewpoint, this study
contributes to the econometric field by blending long-memory models with machine learning methods, thus
connecting linear statistical techniques with nonlinear computational intelligence. This combination
improves the accuracy of models and the reliability of predictions in the unpredictable and structurally
fragile energy market of Nigeria.

Also, regarding policy implications, the findings stress the necessity for flexible, data-informed
regulatory strategies. Decision-makers can utilize volatility forecasts enhanced by machine learning to
foresee shocks, refine subsidy reforms, and stabilize energy prices. Acknowledging structural breaks allows
for timely modifications in policies to avert revenue declines and control inflationary pressures stemming
from fluctuations in energy prices. For investors and energy planners, the hybrid models present better
forecasting reliability, which is crucial for risk management, hedging strategies, and long-term investment in
infrastructure. Grasping the dynamics of volatility aids energy companies in accurately assessing risks and
strategizing production or importing in uncertain conditions. Similarly, the technology and research
standpoint, the outstanding performance of ANN-based hybrid models showcases the potential of artificial
intelligence in the field of econometric forecasting. Researchers and analysts are encouraged to investigate
other deep learning frameworks—such as LSTM or GRU networks—to enhance long-memory modeling in
the domains of finance and energy economics. The fusion of econometric long-memory models with
machine learning not only elevates predictive capabilities but also establishes a more resilient system for
decision-making regarding energy market volatility management in Nigeria and other developing economies.
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