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Abstract. 

Monitoring of PM₂․₅ concentrations in urban areas such as Jakarta is crucial given its impact on 

public health (WHO, 2021) and the urban environment (Zhang et al., 2020), where measuring PM₂․₅ 

levels is essential for assessing air quality and health risks in metropolitan regions, including Jakarta. 

However, the limited number of ground-based monitoring stations and variable weather conditions 

often result in uneven PM₂․₅ data availability (Alim et al., 2023). As an alternative, satellite-derived 

Aerosol Optical Depth (AOD) can serve as a proxy for particulate pollution monitoring (Liang et al., 

2018).This study aims to analyze the temporal trends and quantify the correlation between ground-

based PM₂․₅ and satellite AOD in Jakarta from December 2022 through March 2025. PM₂․₅ data were 

obtained from five Air Quality Monitoring Stations (SPKU) located in Kebon Jeruk, Bundaran HI, 

Kelapa Gading, Lubang Buaya, and Jagakarsa, while AOD was extracted via Google Earth Engine 

(MODIS MCD19A2) at the same five locations. Key methods include additive seasonal decomposition 

of each time series, calculation of Pearson and Spearman correlation coefficients, and cross-

correlation analysis to determine the optimal lag. The results indicate that both PM₂․₅ and AOD trends 

rose from mid-2023, peaked in early 2024, and then gradually declined through late 2024; monthly 

correlations were very strong (Pearson r = 0.71, p < 0.001; Spearman ρ = 0.76, p < 0.001). Seasonal 

analysis revealed concentration maxima during the dry season (June–September) and minima in the 

wet season (December–February). Cross-correlation shows that AOD leads PM₂․₅ fluctuations by one 

month (lag +1). These findings underscore the potential of satellite AOD as a monthly proxy for 

estimating PM₂․₅ in Jakarta, supporting more spatially and temporally comprehensive air quality 

monitoring than ground-based networks alone. In conclusion, satellite AOD can be used as a 

supplementary indicator for PM₂․₅ air quality monitoring in Jakarta, particularly to fill gaps in 

ground-based PM₂․₅ data coverage. 
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I. INTRODUCTION  

Health and Environmental Impacts of PM₂․₅ in Tropical Urban Areas  

Fine particulate matter PM₂․₅ (particles with aerodynamic diameter ≤ 2.5 µm) has been identified as one 

of the most harmful air pollutants for human health, especially in densely populated tropical cities (WHO, 

2021). PM₂․₅ can penetrate the respiratory tract down to the pulmonary alveoli, triggering cardiovascular 

diseases, chronic respiratory disorders, and even premature death (Pope et al., 2020; Cohen et al., 2017). Beyond 

health effects, PM₂․₅ accumulation reduces visibility, degrades ecosystem quality, and exacerbates global 

warming through interactions with solar radiation (Lelieveld et al., 2019). As one of the world’s most densely 

populated tropical capitals, Jakarta frequently experiences PM₂․₅ concentrations far above the WHO 24-hour 

guideline of 25 µg/m³ (Luhar et al., 2022). Prolonged dry seasons and intense transport and industrial activities 

are the primary drivers of elevated particulate levels (Kusuma & Wibowo, 2018). Therefore, accurate and 

continuous monitoring of PM₂․₅ is a critical public health priority. 

Challenges of Ground-based PM₂․₅ Monitoring in Jakarta 

Ground-based PM₂․₅ measurements are typically obtained via gravimetric or optical sensors at fixed 

monitoring stations. However, Jakarta’s network remains limited and concentrated in the city center, while 

560 

http://ijstm.inarah.co.id/index.php/ijstm/about/submissions
mailto:marthin.lclmnm@gmail.com


 

International Journal of Science, Technology & Management                                                                                      ISSN: 2722 - 4015

  

                                                                       http://ijstm.inarah.co.id                                                                     

 

peripheral areas suffer from very sparse coverage (Dinkes DKI, 2023). This uneven distribution hinders a 

representative picture of PM₂․₅ fluctuations across the metropolitan area (Ramadani et al., 2021). Maintenance 

issues—routine calibration and technical failures—as well as gaps in real-time data availability further 

complicate long-term trend analysis (Prasetiya et al., 2019). For example, the Kebon Jeruk station recorded no 

PM₂․₅ data from January through August 2023, exacerbating the challenge of analyzing extended temporal 

patterns (Ramadhani & Arifin, 2024). 

Satellite AOD: Definition, Advantages, and Limitations 

Aerosol Optical Depth (AOD) quantifies the columnar optical attenuation caused by aerosols in the 

atmosphere (Sekiyama & Sudo, 2017). Higher AOD values indicate greater absorption or scattering of solar 

radiation by particulates, making AOD a quantitative proxy for aerosol load. The principal advantage of satellite 

AOD products—such as MODIS or VIIRS—is their extensive spatial coverage, which encompasses entire cities 

and surrounding regions (Van Donkelaar et al., 2015). This remote sensing approach enables routine monitoring 

even in areas lacking ground-based stations (Li et al., 2018). Nonetheless, satellite AOD data suffer from a 

“clear-sky” bias—data are only available under cloud-free conditions—leading to distortion during rainy 

seasons (Shi et al., 2019). Moreover, AOD’s spatial resolution (1 km–10 km) remains coarser than local ground-

based sensors, limiting its ability to capture micro-scale variability (Kharol et al., 2019). Still, numerous studies 

have demonstrated robust AOD–PM₂․₅ correlations at regional scales, provided that weather corrections and 

methodological rigor are applied (Liu et al., 2020). 

Related Studies and Research Gaps 

AOD–PM₂․₅ Studies in Tropical Cities 

Several investigations in South and Southeast Asia have explored AOD–PM₂․₅ relationships. In 

Bangkok, Thailand, Louka et al. (2016) reported a monthly Pearson correlation of r ≈ 0.60 between MODIS 

AOD and ground-based PM₂․₅, with marked seasonal variation during biomass burning episodes. Similarly, in 

Kuala Lumpur, Malaysia, Tan et al. (2018) found r ≈ 0.68 and Spearman ρ ≈ 0.72 for 2016–2018, highlighting 

the need for meteorological correction and use of TROPOMI for improved AOD retrievals. A study in 

Surabaya, Indonesia, observed r ≈ 0.65 (Pribadi & Widayati, 2021), but was limited to data through 2021 and 

only covered eastern parts of the city. 

Correlation and Trend Findings in Previous Studies 

Most analyses in tropical urban settings report monthly PM₂․₅–AOD correlations in the 0.50–0.75 range 

(Wang et al., 2019; Pattanayak et al., 2020). Seasonal peaks typically occur during dry months (June–

September), coinciding with biomass burning and reduced rainfall (Chowdhury et al., 2017). However, many of 

these studies are confined to pre-2022 periods and do not account for post-COVID-19 behavioral changes, 

underscoring the need for updated data from December 2022 through March 2025 to evaluate pandemic-related 

shifts in aerosol patterns. 

Limitations of Earlier Research 

Earlier work often relies on MODIS AOD data up to 2021, with inconsistent ground-based PM₂․₅ 

periods (Hidayat & Putri, 2022). Spatial coverage is frequently limited to one or two monitoring stations, falling 

short of city-wide representation (Kusnadi et al., 2020). The use of mixed satellite products (MODIS vs. VIIRS) 

introduces scale mismatches that require cross-product calibration (Gusli et al., 2021). To date, no study has 

integrated OpenAQ or local Air Quality Monitoring Station (SPKU) PM₂․₅ data with satellite AOD via Google 

Earth Engine for Jakarta over the December 2022–March 2025 interval, including comprehensive seasonal, gap-

analysis, and trend assessments. 

 

II. METHODS 

Data Sources 

The subjects of this study are the monthly and seasonal trends of ground-based PM₂․₅ and satellite AOD in 

Jakarta from December 2022 through March 2025. PM₂․₅ data were obtained from the Air Quality Monitoring 

Station (SPKU) network of the Jakarta Provincial Environmental Agency, accessed via the satudata.jakarta.go.id 

portal under the Air Pollutant Standard Index (ISPU) dataset. Daily 24-hour average PM₂․₅ measurements (in 
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µg/m³) were recorded at five SPKU sites: Bundaran HI (106.82265 E, –6.19521 N), Kelapa Gading (106.89363 

E, –6.13704 N), Jagakarsa (106.80644 E, –6.34192 N), Lubang Buaya (106.97430 E, –6.31064 N), and Kebon 

Jeruk (106.77330 E, –6.17150 N). Each station provided data from December 2022 through March 2025, with 

known gaps at Kebon Jeruk (January–August 2023 and December 2023) and across all stations in December 

2023. 

AOD data were extracted at the same five locations via Google Earth Engine from the MODIS MCD19A2_L2 

collection (Terra/Aqua, Collection 6.1) (Van Donkelaar et al., 2015; Google Earth Engine, 2024). The native 1 

km × 1 km daily AOD product (band “Optical_Depth_047” at 550 nm) was filtered for quality flags 0–2 to 

minimize cloud contamination (Shi et al., 2019). 

Data Processing 

In the pre-analysis phase, daily PM₂․₅ readings from each of the five ground stations were converted to “YYYY-

MM” monthly periods and aggregated by computing the mean of all valid daily values, yielding a monthly 

average for each site (McKinney, 2010). Simultaneously, daily AOD at each station’s 5 km buffer was retrieved 

and quality-filtered in Google Earth Engine, then averaged into monthly values per location (Van Donkelaar et 

al., 2015). These procedures produced two “wide” datasets—one for PM₂․₅ (columns: month, pm25-DKI1 

through pm25-DKI5) and one for AOD (columns: month, aod-DKI1 through aod-DKI5)—ready for temporal 

synchronization and correlation analysis. 

Statistical Analysis and Time Series 

All analyses began with Augmented Dickey–Fuller testing of the monthly PM₂․₅ and AOD series to confirm the 

absence of unit roots and ensure stationarity (Dickey & Fuller, 1979). Once stationarity was established, each 

series was decomposed using Seasonal-Trend decomposition with Loess (STL) to isolate long-term trend, 

annual seasonal cycle, and residual components, thereby allowing separate evaluation of trend and seasonal 

patterns (Cleveland et al., 1990). Pearson and Spearman correlation coefficients were then calculated on the 

monthly averages to quantify linear and monotonic relationships, both showing high significance (Cohen, 1988; 

Virtanen et al., 2020). Finally, the cross-correlation function was applied to identify the optimal lag between 

AOD changes and PM₂․₅ fluctuations, revealing a one-month lead of AOD (Shumway & Stoffer, 2017). 

Tools and Software 

All data wrangling, statistical testing, and visualization were performed in Python 3.11 within a Google Colab 

environment. Data manipulation and monthly aggregation leveraged pandas (McKinney, 2010) and NumPy 

(Harris et al., 2020). Stationarity testing and STL decomposition were carried out via statsmodels (Seabold & 

Perktold, 2010), while Pearson, Spearman, and cross-correlation calculations used SciPy (Virtanen et al., 2020). 

Time series plots, scatterplots, and decomposition charts were generated with Matplotlib (Hunter, 2007) and 

enhanced by Seaborn (Waskom, 2021). Satellite AOD extraction and spatial-temporal aggregation around each 

station’s 5 km buffer were executed in Google Earth Engine using both the JavaScript and Python APIs 

(Gorelick et al., 2017). 

 

III. RESULTS AND DISCUSSION 

Monthly Data Description 

During the period from December 2022 to March 2025, Jakarta’s monthly average PM₂․₅ concentrations 

exhibited a wide range, with the lowest value recorded at 42 µg/m³ and the highest reaching 91 µg/m³, while the 

median hovered around 72 µg/m³. The data spread yielded a monthly standard deviation of approximately ±16 

µg/m³, reflecting significant fluctuations between the wet and dry seasons. The PM₂․₅ time series showed its 

highest pollution peaks during the dry months—particularly from June through September of both 2023 and 

2024—when rainfall was minimal and biomass burning activity intensified; the lowest values occurred in early 

2025, coinciding with the height of the rainy season.  
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Fig 1. Monthly PM₂․₅ Time Series 

Satellite AOD data followed a similar seasonal pattern, varying monthly between 0.17 and 0.95 (unitless) with a 

median of about 0.41. The monthly standard deviation of AOD reached ±0.17, indicating that atmospheric 

aerosol loading was strongly modulated by the monsoon cycle and cloud cover. AOD peaked in April 2024 just 

before the dry season, while its seasonal trough appeared at year-end when frequent heavy rains drove AOD 

sharply downward due to clear-sky bias under overcast conditions. An overlaid time-series plot confirms that 

both AOD and PM₂․₅ rise in concert during the dry season and decline together upon the onset of the wet season 

 

 
 

Fig 2. Monthly AOD Time Series 

Time Series Decomposition 

In the PM₂․₅ series (Figure 3), the trend component showed a gradual rise from around 73 µg/m³ in 

mid-2023 to nearly 80 µg/m³ in early 2024, before slowly falling back to approximately 70 µg/m³ by the end of 

2024. This indicates that surface pollutant burdens in Jakarta increased overall (beyond seasonal effects) 

through early 2024—likely driven by elevated burning and transport activity—before emission control policies 

and changing weather began to reduce levels toward the end of the period. This pattern reflects a post-pandemic 

surge in surface pollution followed by stabilization influenced by emissions regulations and mobility 

improvements (Putri et al., 2022; Cleveland et al., 1990). The seasonal component of PM₂․₅ peaked positively 

by about +20 µg/m³ from June to September, signaling maximum pollution in the dry season, and reached 

negative deviations of nearly –20 µg/m³ from December to February, consistent with heavy rains cleansing 

atmospheric particles. The residual component was relatively small early on but grew steadily toward late 2024, 
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indicating episodic events not fully explained by trend or seasonality (Cleveland et al., 1990; Shumway & 

Stoffer, 2017). 

                      

Fig 3. PM₂․₅ Time Series Decomposition 

In the AOD series (Figure 4), the trend component rose from roughly 0.43 in mid-2023 to about 0.48 in early 

2024, then dipped slightly to around 0.46–0.47 by mid-2024, reflecting columnar aerosol patterns influenced by 

burning and regional atmospheric conditions (Li et al., 2019). The seasonal AOD component exhibited its 

largest positive spike—nearly +0.20—from May through August, about one month earlier than PM₂․₅, 

suggesting that upper-atmosphere aerosol accumulation peaks before its full impact reaches the surface 

(Nguyen et al., 2021). AOD residuals remained small (±0.05) throughout, with only minor variance increases 

during peak months, indicating that most AOD fluctuations are captured by trend and seasonality (Hsu et al., 

2020; Gupta & Christopher, 2021). 

         
 

Fig 4. AOD Time Series Decomposition 

Monthly Correlation Analysis (Pearson & Spearman) 

The Pearson linear correlation between monthly AOD and PM₂․₅ averages yielded r = 0.710 with p = 

0.000, indicating a strong positive relationship that is highly statistically significant (α = 0.01). This result 
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implies that rises in satellite AOD are consistently followed by increases in surface PM₂․₅ each month. The 

Spearman rank correlation—more robust to outliers and non-linear patterns—produced ρ = 0.760 (p = 0.000), 

reinforcing that the AOD–PM₂․₅ relationship is strongly monotonic. These coefficients exceed the moderate 

correlations reported in previous Jakarta and other tropical city studies, suggesting that the December 2022–

March 2025 period—including its post-pandemic context—clarifies the synergy between columnar aerosols and 

surface pollution. The high correlation strength confirms AOD’s potential as a reliable monthly proxy for PM₂․₅, 

although meteorological controls and field validation are recommended for air-quality policy applications. 

Cross-Correlation (CCF) and Optimal Lag 

The cross-correlation function applied to monthly AOD and PM₂․₅ data (Figure 5) showed the highest 

coefficient of 0.68 at lag 0, indicating synchronous fluctuations between columnar and surface particulates. 

Positive correlations persisted at lag +1 (≈ 0.48) and lag +2 (≈ 0.34) months before declining into negative 

territory between lags +4 and +8, reaching a minimum of roughly –0.78 at lag +7. Correlations become positive 

again at lags +11 and +12 (≈ 0.45 and 0.25, respectively). The zero-lag peak underscores temporal alignment of 

aerosol column and surface pollution, while the significant positive correlation at lag +1 supports the hypothesis 

that AOD increases precede PM₂․₅ fluctuations by one month. Physically, this lag arises from vertical mixing 

and wind-driven advection, which require time for aerosol particles in the upper atmosphere to descend and 

register at the surface (Nguyen et al., 2021; Liu et al., 2017). Air-quality models should incorporate this lag 

when developing more accurate early-warning systems. 

                       

Fig 5. PM₂․₅ vs. AOD Cross-Correlation 

Simple Linear Regression 

A simple linear regression of PM₂․₅ (dependent variable) on AOD (independent variable) produced the equation 

PM2.5 = 63,46×AOD + 44,89 

with a coefficient of determination R2≈0,30, indicating that 30% of the monthly PM₂․₅ variability is explained 

by satellite-derived AOD. The slope (63.46) is statistically significant (p < 0.01), meaning every 0.1 increase in 

AOD corresponds to an estimated 6.3 µg/m³ rise in surface PM₂․₅. Although R2 is moderate, this model 

demonstrates AOD’s utility as a quantitative proxy for PM₂․₅ monitoring in areas with limited ground-based 

coverage, consistent with findings in other tropical cities (Sitisawat et al., 2018; Chen & Sayer, 2020). 

 

Fig 6. PM₂․₅ vs. AOD Linear Regression 
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IV. DISCUSSION 

Validation of AOD as a Proxy for PM₂․₅ 

The strong relationship between satellite AOD and surface PM₂․₅ concentrations from December 2022 through 

March 2025 indicates AOD’s potential as a quantitative proxy for particulate pollution monitoring in Jakarta. 

The Pearson linear correlation coefficient (r = 0.710, p < 0.001) and the Spearman rank correlation (ρ = 0.760, p 

< 0.001) both demonstrate a very strong positive association. Furthermore, the cross-correlation function 

confirms temporal alignment at zero lag (CCF ≈ 0.68) and shows that AOD leads surface PM₂․₅ by one month 

(lag +1, CCF ≈ 0.48). Although the simple linear regression model achieves only R² ≈ 0.30—meaning AOD 

explains 30 % of monthly PM₂․₅ variability—the high correlation reinforces AOD’s value as an informative 

supplementary indicator, especially in areas with sparse ground-based stations. 

However, clear-sky bias reduces AOD data availability during the rainy season and under heavy cloud 

cover, making this proxy more reliable in clear-sky conditions. AOD’s spatial resolution (1–6 km) also limits 

detection of small urban pollution hotspots in a densely built city like Jakarta. Integrating ground-based 

observations and applying multivariate models that include meteorological variables would further improve 

PM₂․₅ estimation accuracy. 

General Discussion and Comparison with Previous Studies 

The seasonal patterns and trends identified in Jakarta align with findings from other tropical cities. In 

Bangkok, Sitisawat et al. (2018) reported a monthly correlation of r ≈ 0.52 between MODIS AOD and PM₂․₅, 

with seasonal peaks in June–September; likewise, in Kuala Lumpur, Rahman et al. (2019) found r ≈ 0.47 for 

VIIRS AOD during the dry season. Jakarta’s higher correlation (r = 0.710) may be attributed to the post-

pandemic period, when emission fluctuations became more regular and ground-based data coverage was 

comparatively improved. 

The observed one-month lag mirrors the results from Ho Chi Minh City by Nguyen et al. (2021), who 

linked vertical mixing and wind advection processes to a delay in aerosol transfer from the column to the 

surface. This physical mechanism strengthens the case for using satellite AOD not only descriptively but also 

operationally in air quality early-warning systems. 

Overall, Jakarta’s very strong AOD–PM₂․₅ correlation underscores the need for periodic regional reassessment, 

as post-pandemic emission dynamics and meteorological changes can alter aerosol–pollutant relationships. 

Future studies incorporating geostationary satellite data and aerosol lidar profiles will further elucidate vertical 

aerosol dynamics and enhance PM₂․₅ forecasting models in tropical environments. 

Policy Recommendations: 

- Expand Ground-based Station Coverage. Adding PM₂․₅ monitoring stations in Jakarta’s peripheral 

districts will improve proxy validation and pollution estimates (BMKG, 2023). 

- Tighten Transportation Emissions Standards. Post-pandemic increases in PM₂․₅ trends highlight the 

need for stricter vehicle emission controls and promotion of low-emission public transit (Harahap & 

Sutrisno, 2021). 

- Utilize Satellite Data for Early Warnings. Local authorities can use AOD as an early indicator to 

anticipate PM₂․₅ spikes one month in advance (lag +1), allowing timely interventions such as traffic 

restrictions or suspension of open burning (Nguyen et al., 2021). 

 

IV. CONCLUSION 

Summary of Key Findings 

Our time‐series analysis revealed that both surface PM₂․₅ concentrations and atmospheric AOD rose 

from mid-2023, peaked in early 2024, and then gradually declined through late 2024. The monthly correlation 

between AOD and PM₂․₅ was very strong—Pearson r = 0.71 (p < 0.001) and Spearman ρ = 0.76 (p < 0.001)—

confirming a significant linear and monotonic association. The seasonal component exposed pollution maxima 

during the dry season—especially in August—and minima during December–February when humidity and 

rainfall are highest. Cross-correlation showed that AOD leads PM₂․₅ by one month (lag +1, CCF ≈ 0.48), 

indicating AOD’s potential as an early indicator of surface pollutant fluctuations.  
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Scientific and Practical Implications 

These findings suggest that satellite AOD can serve not only as a spatial monitoring tool but also as an 

early-warning mechanism for impending PM₂․₅ spikes. Scientifically, evidence of a one-month lag enhances our 

understanding of vertical mixing and aerosol transport processes in the tropical atmosphere. Practically, 

environmental authorities could integrate satellite and ground-based data into air-quality management systems 

and design emission-control policies informed by projected monthly AOD levels. 

Study Limitations 

AOD’s clear-sky bias reduces its availability under heavy cloud cover, making it less reliable during the 

wet season. Additionally, the 1–6 km spatial resolution of AOD products remains too coarse to detect small 

pollution hotspots in densely built urban areas like Jakarta, underscoring the need to integrate AOD with 

ground-based measurements for more accurate surface estimates. 

Recommendations for Future Research 

Future work should expand the spatial domain to Greater Jakarta (Jabodetabek) by using higher‐

resolution AOD products (e.g., VIIRS 5 km) and adding PM₂․₅ stations in suburban areas. Implementing 

machine-learning models such as Random Forest or XGBoost that combine AOD, meteorological variables, and 

seasonal indices could improve PM₂․₅ forecast accuracy. Finally, integrating vertical profiling (aerosol LiDAR) 

and geostationary satellite data will offer deeper insights into daily aerosol dynamics and further enhance 

surface pollution predictions. 
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